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ABSTRACT 

Water temperature is a key physical habitat determinant in lotic ecosystems as it 
influences many physical, chemical and biological properties of rivers.   Hence, a good 
understanding of the thermal regime of rivers is essential for effective management of 
water and fisheries resources.  This study deals with the modeling of hourly stream water 
temperature using a deterministic model, an equilibrium temperature model and an 
artificial neural network model.  The water temperature models were applied on two 
thermally different streams, namely, the Little Southwest Miramichi River (LSWM) and 
Catamaran Brook (Cat Bk) in New Brunswick, Canada.    
 
The deterministic model calculated the different heat fluxes at the water surface and from 
the streambed, using different hydrometeorological conditions.  Results showed that 
microclimate data are essential in making accurate estimates of the surface heat fluxes.  
Results also showed that for larger river systems, the surface heat fluxes were generally 
the dominant component of the heat budget with a correspondingly smaller contribution 
from the streambed (90%).  As watercourses became smaller and as groundwater 
contribution became more significant, the streambed contribution became important 
(20%).   
 
The equilibrium temperature model is a simplified version of the deterministic model 
where the total heat flux at the surface is assumed to be proportional to the difference 
between the water temperature and the equilibrium temperature.  The poor model 
performance compared to the other models developed in this study suggested that the air 
and equilibrium temperature did not reflect entirely the total heat flux at an hourly scale.  
The model’s best performance was in autumn, where the low water level permitted a 
more efficient thermal exchange, whereas the presence of snowmelt conditions in spring 
resulted in poorer performance. 
 
An artificial neural network (ANN) was also developed to predict hourly river water 
temperatures using minimal and accessible input data.  The results showed that ANN 
models are effective modeling tools, with similar or better results to comparable modeling 
studies.  The ANN model performed best in summer and autumn and had poorer, but still 
good, performance in spring, explained by the high water levels.   
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CHAPTER 1: INTRODUCTION 

 

1.1  GOAL AND OBJECTIVES 

Water temperature has both economic and ecological significance when considering 

issues such as water quality and biotic conditions in rivers (Caissie, 2006).  As such, fish 

habitat suitability is highly dependent on stream water temperatures.  The thermal regime 

of rivers is influenced by many factors such as atmospheric conditions, topography, 

riparian vegetation, stream discharge and streambed thermal fluxes (Poole and Berman, 

2001; Caissie, 2006; Webb et al., 2008).  It is therefore important to use adequate water 

temperature modeling approaches to effectively predict water temperature variability.   

 

Water temperature controls the rate of decomposition of organic matter, dissolved oxygen 

content, and chemical reactions in general. Stream water temperatures have been studied 

for many years (Macan, 1958; Raphael, 1962; Brown, 1969).   Stream water temperature 

can also impact recreational activities such as swimming and fishing.  Early studies 

mainly focused on the impact of forest harvesting on water temperature, whereas, recent 

studies have focused on issues related to fish-habitat.  For example, studies have found 

that stream temperature dynamics can influence the habitat conditions and growth rate of 

different fish species, aquatic invertebrates and others water dwelling animals 

(Markarian, 1980; Wichert and Lin, 1996; Beitinger and Bennett, 2000; Cox and 

Rutherford, 2000a, 2000b).  Stream temperatures have also been monitored in order to 

evaluate the impact of human activities due to urbanization (Kinouchi et al., 2007; 

Nelson and Palmer, 2007), thermal pollution (Bradley et al., 1998) and land-use activities 
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(Nagasaka et al. 1999).  Flow reduction and flow alteration have also been observed to 

have an impact on the thermal regime of rivers (Morin et al. 1994; Sinokrot and Gulliver 

2000).  Understanding of the thermal regime of rivers in forested ecosystems has played 

an important role in the development of water temperature models.  Valuable information 

was gained from the study of heat exchange processes in forested ecosytems, such as the 

contribution by solar radiation and conduction (Sridhar et al., 2004; Moore et al., 2005b).  

Increased interest has also been noted due to the potential effects of climate change on 

river thermal regimes (Morrison et al., 2002; Morrill et al., 2005; Tung et al., 2006).    

 

Very few studies have predicted hourly stream temperatures, focusing mostly on daily 

mean water temperatures (Bélanger et al., 2005; Caissie et al., 2007; Larnier et al., 2010).  

Hourly water temperatures give a better understanding of how much stream temperature 

varies during the course of the day and to what extent the variation occurs.  It also 

provides minimum and maximum temperature values useful as boundary conditions for 

water quality modeling (Flint and Flint, 2008) or to assess the stress and recovery period 

of aquatic resources during high temperature events (Breau et al., 2007). 

 

The goal of the research described herein is to develop hourly water temperature models 

and apply them to two thermally different streams in two forested catchments of the 

Miramichi River in New Brunswick.  This region is world renowned for its population of 

Atlantic salmon and offers long-term monitoring of meteorological and hydrological 

data.  The three models selected were: 1) a deterministic model, 2) an equilibrium 
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temperature model, and 3) an artificial neural network model.  The specific objectives of 

each stream temperature model are described in the following section. 

 

1.1.1 DETERMINISTIC MODEL 

Deterministic models estimate changes in river water temperature from energy fluxes at 

the water-surface interface and at the streambed-water interface.  A number of studies 

have used heat budget models to predict variability in river water temperatures (Evans et 

al., 1998; Younus et al., 2000; Caissie et al., 2007; Hannah et al., 2008); however, few 

included stream microclimate conditions as well as the streambed heat flux to predict 

water temperatures at the hourly time scales.  The objective of using the deterministic 

model was to examine, in detail, the relative contribution of surface vs. streambed heat 

fluxes for two watercourses under varied meteorological conditions.  This was done at 

specific times to capture various seasonal and climatic conditions.  The specific 

objectives of deterministic modeling are: 1) To develop a heat budget model for two 

thermally different rivers (Catamaran Brook and Little Southwest Miramichi River, New 

Brunswick, Canada) using stream microclimate data, 2) To compare observed vs. 

predicted total heat fluxes for these two watercourses, and 3) To compare the relative 

contribution of heat fluxes at both the air-water interface and at the water-streambed 

interface. 

 

1.1.2 EQUILIBRIUM TEMPERATURE MODEL 

Deterministic models can be complex and the data needs extensive if all heat components 

are considered, and the required meteorological and hydrological data are not easily 
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obtained and accessible.  The equilibrium temperature model was first developed to 

simplify the determination of the total heat flux (Edinger et al., 1968; Chaudhry et al., 

1983; Jeppesen and Iversen 1987). The total heat flux at the surface is assumed to be 

proportional to the difference between the water temperature and an equilibrium 

temperature Te (Caissie et al., 2005).  Many studies have used the concept of the 

equilibrium temperature to estimate stream temperatures (Mohseni and Stefan, 1999; 

Bogan et al., 2003, 2004; Caissie et al., 2005; Marcé and Armengol 2008; Larnier et al. 

2010); however, few studies have tested this model at an hourly time scale, due to 

unavailability of hourly data. 

 

In this study the total heat flux was estimated using a function of water temperature and 

equilibrium temperature.  A linear relationship between the equilibrium temperature and 

air temperature was also assumed, as in Caissie et al. (2005). An objective of this study is 

therefore to develop an hourly water temperature model using the equilibrium 

temperature concept and to apply this model to two thermally different streams within the 

Miramichi River basin system.   

 

1.1.3 ARTIFICIAL NEURAL NETWORK MODEL 

Artificial neural networks (ANN) have been widely used in the field of hydrology, since 

the 1990’s.  Examples include the modeling of precipitation and runoff, water demand 

predictions, groundwater modeling, and water quality modeling (Govindaraju, 2000a).  

ANN have become an interesting modeling tool for many reasons.  One of the main 

reasons is the fact that the ANN algorithm has the capacity to recognize relations between 
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input and output variables without requiring physical explications.  This approach can be 

very useful in hydrology because many of its processes are non-linear, complex, or 

mathematically incomplete.  Artificial neural networks also work well when the data sets 

contain noise due to the distributed processing within the network (Govindaraju, 2000a).  

Once calibrated, ANN models are simple to use. Although ANN have been applied in 

many hydrological studies in recent decades, very few of these studies have dealt with the 

modeling of river water temperatures (Risley et al., 2003; Bélanger et al., 2005; Karaçor 

et al., 2007; Sivri et al,. 2007; Chenard and Caissie, 2008), especially in an hourly time 

step (Risley et al., 2003).   

 

Therefore, the objective of this component of the study is to develop an ANN model to 

predict hourly river water temperatures using minimal and accessible input data.  This 

model was applied to two thermally different watercourses and its performance was 

compared to other water temperatures models. 

 

1.2 THESIS OVERVIEW 

Chapter 2 is a literature review of the processes governing fluvial thermal regimes, its 

impacts and its influences.  Stream temperature models have been in existence for many 

years, and have been applied in different scientific disciplines.  Water temperature studies 

on aquatic ecosystems and habitat, and the impact of different anthropogenic impacts 

(forest harvesting, climate change, and streamflow modifications) are also presented.  A 

review of water temperature models used in this study is also presented.  This chapter 

reviews studies using deterministic models, equilibrium temperature models, artificial 
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neural network models, stochastic models and other types of water temperature models.  

The methodology describing the detailed application of the three water temperature 

models used in this study is presented in Chapter 3.  Also presented is information on the 

study area where the models were applied, data collection, and the model performance 

criteria.  Detailed results of water temperature models are presented in Chapter 4 and are 

discussed in Chapter 5, as along with a comparison between them.  Chapter 6 gives the 

overall conclusion for each specific model and recommendations for future research on 

water temperature modeling. 
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CHAPTER 2: LITERATURE REVIEW 

 

The study of stream water temperatures has been of interest to the scientific community 

for many years (Macan, 1958; Brown, 1969; Hopkins, 1971; Smith, 1972; Vannote et al., 

1980; Ward, 1985).  In recent years, new technological developments (such as mini data 

loggers) have facilitated the measurement and the monitoring of stream temperatures and 

have permitted the development of new techniques for data analysis and modeling 

(Moore et al., 2005b; Caissie, 2006).  This chapter provides a literature review of studies 

describing the thermal regime and its associated biological impacts of rivers (mainly 

aquatic habitat).  Anthropogenic impacts on stream temperatures, such as timber 

harvesting and climate change, are also reviewed.  The last section provides a review of 

the different water temperature models used by previous investigators that were also used 

in this study (deterministic, equilibrium temperature and artificial neural network models) 

as well as a limited review of certain other models. 

 

2.1 THERMAL REGIME OF RIVERS 

The thermal regime of a river is the range and timing of water temperatures experienced 

in the stream, for a selected period (annual, seasonal, diurnal).  Many factors can 

influence the thermal regime.  These can be classified using various methods. Poole and 

Berman (2001) separated the factors influencing the thermal regime into two categories: 

internal and external factors.  External factors consider the net energy and water inputs.  

Internal factors are related to the fluvial processes and river characteristics, for example, 
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riparian zone features, and surface/subsurface water interactions).  Temporal and spatial 

changes in these factors affect and alter water temperature variability along river reaches. 

 

River water temperatures can also be influenced by such factors as atmospheric 

conditions, topography, stream discharge, and riverbed thermal fluxes (Caissie, 2006).  

Atmospheric conditions represent the most influential category.  These are principally 

responsible for the heat exchange process at the water surface.  Included in this category 

are solar radiation, air temperature, humidity, and wind speed, and the type and quantity 

of precipitation.  Topography includes latitude/longitude, riparian vegetation, geology, 

azimuth of the reach and upland shading.  Human activities, like timber harvesting, can 

affect some topographic factors (riparian vegetation), resulting in an increase in river 

water temperatures, especially for small streams.  Stream discharge factors are primarily 

related to hydraulic conditions (e,g, surface area and water volume).  Some stream 

discharge factors are extremely important, like the volume of water, whereas others can 

be neglected, like the slope or waterfalls.  Streambed conditions can also influence the 

thermal regime depending on the heat exchange processes at the riverbed.  These factors 

mainly include the heat conduction at the riverbed and the contribution of groundwater 

flow.  Streambed fluxes have been considered in a few studies (Jobson, 1977; Sinokrot 

and Stefan, 1993; Hondzo and Stefan, 1994; Kim and Chapra, 1997; Webb and Zhang, 

1997; Evans et al., 1998); however, as evident from the available literature, this subject 

has not been thoroughly studied.  

 

The thermal regime of rivers has been widely studied for many years.  For example, 

Macan (1958) studied the seasonal trends in water temperature as well as the influence of 
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sunshine and other parameters related to water temperature.  This descriptive study 

concluded that the diurnal variation of water temperature was more significant during 

periods of a clear sky.  The largest diel fluctuations in water temperature are generally 

observed in summer while the smallest diel fluctuations are generally observed in winter, 

as reported in a study on the Hinau in New Zealand (Hopkins, 1971).  On a seasonal 

basis, water temperature varies from the lowest values in spring to maximum water 

temperature in mid-summer, followed by a cooling period in autumn prior to winter 

conditions (Vannote et al., 1980).  This phenomenon is important for ecological processes 

and for the flora and fauna of the river’s environment (Vannote et al., 1980).  Daily 

fluctuations can be observed on a local scale or along a reach of a stream.  For example, 

upstream waters are generally colder due to groundwater contributions (Vannote and 

Sweeney, 1980); water temperature tends to be warmer downstream due to a longer run 

and exposure to heat sources (Danehy et al., 2005).  Diel variations are also dependent on 

climate and physical characteristics of rivers.  For example, the downstream sections of 

rivers are deeper and diel variations are less significant than sections upstream where the 

depth of water is small.  All of these seasonal or daily variations of stream water 

temperatures are important for aquatic resources.  This concept is explained in greater 

detail in the ‘River Continuum Concept’ (Vannote et al., 1980).   

 

An important research work on the thermal regime was conducted by Ward (1985) on 

many rivers in the southern hemisphere.  Ward (1985) also observed that diel fluctuations 

increased further downstream where water sources are less dominated by groundwater 

and the stream is more exposed to meteorological conditions.  Diel fluctuations decreased 

further downstream in rivers where water depths increased (Ward, 1985).  This study also 
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concluded that the difference in the thermal regime between the southern and northern 

hemispheres was mainly related to the size of rivers and not to the thermal process.  

Another factor making the comparison difficult was the presence of particular arid and 

semi-arid zones in the southern hemisphere, mainly in Australia. 

 

A study by Smith (1972) tried to categorize, without success, the thermal regime of rivers 

using latitude and altitude as the dominant factors.  Due to the complex nature of the 

thermal process in rivers (Smith, 1975; Smith and Lavis, 1975), no other studies have 

tried to categorize the thermal regime according to geographical positions.  Some studies 

have shown relations between different parameters of thermal regime.  For instance, 

Webb and Walling (1986) established a relationship between mean temperature and the 

watershed elevation.  However, it was difficult to state specifically that there was a 

relationship between the mean temperature and watershed elevation because stream water 

is usually colder at higher elevations. The latitudinal difference in climatic parameters 

(e.g. air temperature) may be a major influence on stream thermal regime (Liu et al., 

2005).  Another study investigated the daily and seasonal water temperature to show a 

relation between water temperature and other parameters such as the stream order, 

groundwater contribution and cold-water tributaries (Arscott et al., 2001).  The 

temperature variability of a stream is also highly related to the dynamics and proximity of 

the water source and pathway contributions, the hydro-climatological conditions, 

streamflow volume and basin characteristics as reported in Brown et al., (2005) and 

Cadbury et al. (2008). 
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Using multiple linear regressions, the elevation and azimuth were found to be important 

variables in explaining the average daily temperature patterns (Brown and Hannah, 2008).  

Water temperature is influenced by micro-thermal conditions, because thermal conditions 

can often vary greatly within only a few meters of depth (Clark et al., 1999).  The thermal 

regime can also depend on the type of river (Mosley, 1983).   

 

Kobayashi et al. (1999) observed evidence of major contributions of subsurface water to 

stream water.  Notably, stream temperature gradually decreased during summer 

rainstorms after streamflow peaked. Soil temperature increased with depth during the 

snowmelt period but decreased with depth during the summer.  During storm flow 

recession, stream temperatures related to extreme events (summer storm or snowmelt) 

were similar to the soil temperature at 1.8 m below the land surface, suggesting that 

subsurface water contributions to streamflow are derived from this depth.  Water 

temperatures differences within the region can be explained mainly be latitude, but also 

by morphological conditions, hydrology, water usage, elevation, slope, timber harvesting 

(Mohseni et al., 2002).  Other studies have shown basin-scale stream temperatures are 

strongly affected by streamwater sources, as well as basin characteristics like altitude, 

azimuth and stream length (Brown and Hannah, 2008). 

 

2.2 AQUATIC ECOSYSTEMS 

Aquatic life and habitats greatly depend on stream temperatures.  Researchers have found 

that stream water temperatures influence aquatic organisms differently (Markarian, 1980; 

Wichert and Lin, 1996; Beitinger and Bennett, 2000; Cox and Rutherford, 2000a, 2000b).  

The growth rates of fish and aquatic species distribution are examples of the influence of 
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the thermal regime of rivers.  It is therefore important to have good knowledge of the 

biological implications of river water temperatures.  A change in thermal regime can 

seriously affect habitat quality and life conditions of aquatic species (Jonsson and 

Jonsson, 2010).  Many studies have researched the implication of thermal regime on 

water quality, flora and fauna. Most of the studies on the influence of thermal regime on 

aquatic habitat were carried out during summer months (Elliot and Hurley, 1997; 

Johnston, 1997; Ebersole et al., 2001; Robinson and Child, 2001; Swansburg et al., 

2002).  Most of the significant changes in water temperatures occurred throughout the 

summer, with only some minor variations in winter (Marsh, 1990).   

 

Coutant (1999) was interested in the thermal effect on aquatic organisms as well as the 

factors influencing thermal regime of rivers.  The thermal regime of a river can affect the 

growth of fish (Edwards et al., 1979; Elliot and Hurley, 1997), and this influence can 

differ between different life stages (Huntsman, 1942; Garside, 1969; Robinson and 

Childs, 2001).  Another study looked at the combined effect of high water temperatures 

and low flows on the growth of Atlantic salmon (Swansburg et al., 2002).  The thermal 

regime can also be used as a prediction model of conditions within aquatic ecosystems.  

For example, Crisp and Howson (1982) managed to predict the growth of trout using 

regression analysis for periods of 5 to 7 days. 

 

Fish prefer specific temperatures which influences their distribution throughout a stream 

(Coutant, 1977; Wichert and Lin, 1996).  Aquatic organisms are more sensitive to water 

temperatures above their thermal maxima than they are to those temperatures below their 

thermal maxima (Hester and Doyle 2011).  During high temperatures, salmonids tend to 
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congregate in specific areas of streams or in thermal refugia (Ebersole et al., 2001).  As 

such, fish tend to cluster in cooler zones, increasing their population density at those sites.  

Ebersole et al. (2001) observed that 10% to 40% of fish populations were crowded in 

thermal shelters during high mid-day temperatures.  Shading in streams can also provide 

cold-water patches, which can be potential thermal refuges for cold-water fishes during 

periods of heat stress (Ebersole et al., 2003).  Stream temperature is one of the most 

important variables in determining microhabitat choice for fishes (Baltz et al., 1987).  

Torgersen et al. (1999) observed that behaviour of salmonids can be modified at high 

water temperatures as this study also reported clustering of fish in cooler areas.  Thermal 

patches in streams should be recognized for the biological potential to provide habitat for 

species at the limits of their thermal tolerances (Torgersen et al., 1999).  Temperature can 

also influence the movement of fish (Johnston, 1997; Jensen et al., 1998; Hembre et al., 

2001), migration (Hembre et al., 2001; Schindler, 2001) and impact on the swimming 

performance of fish (Myrick and Cech, 2000). 

 

Diel water temperature variations can also affect the mortality, stress or energy reserve of 

salmonids (Thomas et al., 1986).  In North America, fish species already live at their 

upper limits when it comes to water temperatures (Sinokrot et al., 1995).  Lund et al. 

(2002) have studied the impact of water temperatures on Atlantic salmon parr both in the 

wild and in the laboratory.  This study concluded that if juvenile salmon were exposed to 

high water temperatures over a long period, they would undergo severe protein damages. 

Another study on Atlantic salmon noted that high temperatures increased the mortality of 

large salmon first, followed by small salmon and then parr (Huntsman, 1942).  For 

instance, temperatures between 23C and 25C amplified the risk of mortality in trout 
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(Lee and Rinne 1980); temperatures between 27C and 28C increased the mortality in 

juvenile Atlantic salmon (Garside, 1973). 

 

Aquatic species can be affected not only by the temperature within the water column, but 

also by the temperature within the riverbed or stream substrate (Meisner et al., 1988; 

Crisp, 1990; Evans et al., 1995; Acronley, 1999; Cox and Rutherford, 2000b).  Since 

many aquatic species use the riverbed for spawning and laying eggs, their development is 

directly influenced by stream conditions (Combs and Burrows, 1957; Combs, 1965; 

Alderdice and Velsen, 1978; Beer and Anderson, 2001).  In fact, the hatching of Atlantic 

salmon eggs is highly influenced by water temperature, as reported in Johnston (1997).  

Optimal incubation periods are situated around 6C (Peterson et al., 1977).  Other studies 

showed that streambed temperature influenced the streams by eliminating frost conditions 

on rivers in winter and reducing high stream temperatures in summer (Webb and Walling, 

1993).  This study showed that the hatching period could be advanced by more than 50 

days depending on temperature conditions.   

 

Riparian vegetation also plays an important role in stream temperature dynamics by 

providing shade for aquatic fishes (Beschta, 1997). The increase in stream temperatures 

as a result of canopy removal can cause high stress levels, greater vulnerability to disease, 

and make aquatic species defenceless against predators.  Water temperatures help to 

regulate the biological activity of aquatic organisms; biological activity has been shown 

to double for every 10 °C increase in water temperature (Brown and Krygier, 1967).  The 
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rate of food evacuation and feeding activity of fishes are also influenced by water 

temperatures (Salvatore, 1987). 

 

2.3 HUMAN IMPACTS 

2.3.1 FOREST HARVESTING 

Knowing the thermal regime of rivers in forested ecosystems is important in water 

temperature modeling.  It provides information on the heat transfer process and the solar 

radiation contribution.  The impact of timber harvesting is a very common study subject 

found in literature on thermal regime of forested ecosystems.  Many studies have shown 

increases in stream water temperatures following forest harvesting, caused primarily by 

changes in solar radiation, but also influenced by stream hydrology and morphology 

(Moore et al. 2005b).    Brown and Krygier (1970) studied the long-term effects of two 

clear-cutting operations on the thermal regime of two small streams in Oregon.  The 

annual maximum temperature increased from 14 °C to 30 °C one year after logging 

began. This was mainly caused by stream exposure to direct solar radiation.  An 

important study over a 30 year period on Salmon Creek (Oregon) observed an increase in 

daily maximum and minimum water temperatures of 6 °C and 2 °C after timber 

harvesting (Beschta and Taylor, 1988).  Additional impacts of timber harvesting were 

related to the occurrence of major floods.  Another study (1969-1989) on the same stream 

demonstrated an increase of water temperature of 8 °C (Hostetler, 1991).  A more recent 

study conducted on a clear-cut stream in British Columbia observed a daily maximum 

temperature increase of up to 5 °C after logging (Moore et al., 2005a).   
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A study on the Alsea River (Oregon) observed an increase of 7.8 °C on mean annual 

water temperature due to the impact of cutting down the trees on a river floodplain 

(Brown and Kryeger, 1967).  This same study highlighted the fact that small streams are 

more vulnerable to small increases in water temperature due to their weak thermal 

capacity caused by having a small water volume.  Another study evaluating the impact of 

timber harvesting on small streams observed an increase of 6.7 °C in water temperature 

(Swift and Messer, 1971).  Rayne et al. (2008) undertook a 3-year study in the Nicola 

River watershed in British Colombia, to examine the impact of removing riparian 

vegetation on water temperatures in headwater streams with lentic sources such as 

wetlands and lakes. The removal of riparian shade was found to increase the maximum 

water temperatures by 1 °C to 2 °C.  Using long-term data, Johnson and Jones (2000) 

found an increase of 7 °C in the maximum water temperature after the removal of some 

riparian vegetation.  St-Hilaire et al. (2000) did not find a significant impact of timber 

harvesting on water temperatures, but observed an increase during summer storm events. 

 

Timber harvesting can affect streams for many years after logging.  Murray et al. (2000) 

estimated a 5 to 15 years period for a stream to find its natural thermal regime after the 

loss in riparian vegetation.  Brown and Krygier (1970) showed a 6 year period was 

required for the recovery of maximum summer temperatures. Studied streams in Oregon 

have only returned to pre-harvesting conditions after 15 years according to Johnson and 

Jones (2000). Macdonald et al. (2003) have studied the water temperatures before and 

after timber harvesting following different cutting scenarios.  Five years after the cutting, 

water temperature stayed within 4 °C to 6 °C higher than normal and diurnal variation 

was higher regarding the selected treatment.   
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Partial timber harvesting can also influence the thermal regime of rivers.  One study 

showed an increase of 5 °C in the summer water temperature after a cut of 66% of the 

vegetation in the buffer zone for a period of more than 7 years (Feller, 1981).  Jackson et 

al., (2001) noted increases for only 2 of 7 clear-cut streams in their study.  They supposed 

that the layer of slash left after logging was deposited along the stream and acted as an 

insulating blanket.   

 

Studies have shown that the greatest impact on stream water temperature following 

timber harvesting is usually observed in summer (Gray and Evington, 1969; Brown and 

Kryeger, 1970; Feller, 1981; Moore et al., 2005b).  A study of Rishel et al. (1982) has 

shown an increase in summer mean and maximum water temperatures, as well as a 

change in their duration.  Winter stream temperature changes have not been well 

documented but appear to be smaller in magnitude (Moore et al., 2005b).  For example, 

Holtby (1988) observed an increase in water temperature due to logging (Carnation 

Creek) mainly in summer (3.2 °C in August) but also in winter (0.7 °C in December).  

Streams showed significant changes in stream temperature as early as February and as 

late as November (Lynch et al., 1984).  The effects of riparian vegetation can be observed 

throughout the year; however, they are most noticeable during spring and reach a 

maximum in summer (Malcolm et al., 2008).  Holtby and Newcombe (1982) observed 

stream water warming as well as an augmentation in diel variation in Carnation Creek.  

Another study examining the impact of riparian vegetation on the West Coast showed that 

changes in water temperatures were mainly observed at high water temperatures 

(Mitchell, 1999).  For instance, no changes were observed for water temperatures lower 
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than 3 °C.  But the augmentation was in the order of 2 °C to 3 °C for water temperatures 

exceeding 15 °C.   

 

The development of good water temperature models is essential to estimate the impact of 

timber harvesting on stream water temperatures.  Brown (1970) stipulated that river water 

temperatures are directly proportional to the increase in heat inputs and inversely 

proportional to streamflow.  A model estimating solar radiation using the sun’s position, 

stream location and orientation was developed by Chen et al. (1998a).  This model was 

then applied at the Upper Grande Basin (Oregon) to study different scenarios of riparian 

vegetation restoration (Chen et al., 1998b). Groundwater flow can also play a role in 

stream cooling after clear-cut logging as reported by Mellina et al. (2002).  A slight 

cooling of streams was also observed due to increased mid-summer discharges caused by 

timber harvesting (Gravelle and Link, 2007). In Georgia, a study examined the impact of 

forest harvesting on a river with a 12 m wide buffer zone (Hewlett and Fortson, 1982).  

The study predicted an increase of 3.2 °C in stream temperatures while they actually 

observed an increase of about 9 °C.  Shanley and Peters (1988) demonstrated 

groundwater contributions to the thermal regime in the Georgia Piedmont watershed.  

This study showed that groundwater inputs during storm events can affect short-term 

water temperature behaviour in small catchments. 

 

Some studies looked at the impact of timber harvesting on aquatic resources.  A study of 

timber harvesting on Carnation Creek (BC) confirmed that water temperature changes 

could affect aquatic resources (Holtby, 1988).  Water temperature changes seemed to 

affect the development of the flora and fauna for many years after logging (Lynch et al., 
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1984; Holtby, 1988; Hostetler, 1991), especially at low streamflow (Hetrick and Brusven, 

1998).  For example, higher water temperatures in winter can force fishing movement 

downstream as much as six weeks earlier than usual (Scrivener and Andersen, 1984).  

This premature movement of fish could result in early arrival at sea resulting in a 

limitation of food resources.  Curry et al. (2002) noticed a warming in autumn and spring 

for 2 years after initial harvesting that could alter many biological processes. Sensitive 

stage of aquatic biota could be affected by time shifting of summer maxima and increase 

in early summer stream temperatures (Mitchell, 1999). 

 

Studies have also shown the importance of vegetation in buffer zones near streams for 

protection against the heating processes (Burton and Likens, 1973; Zwieniecji and 

Newton, 1999; Leblanc and Brown, 2000; Murray et al., 2000; Dent et al., 2008; 

Hrachowitz et al., 2001).   Some studies have shown, though, that buffer zones did not 

provide significant protection against the increase of water temperatures (Hewlett and 

Fortson, 1982; Brosofske et al., 1997; Curry et al., 2002; Sridhar et al., 2004).  The 

thermal regime of rivers can be affected after clear-cut harvesting with or without a 

riparian buffer strip.  Other vegetation parameters like leaf area index, average tree 

height, and streamside vegetation buffer width, are more closely correlated with 

maximum stream temperature (Sridhar et al., 2004).  Channel morphology and stream 

orientation can influence the exposure to solar radiation and therefore the effectiveness of 

buffer zones in response to clear-cut harvesting (Gomi et al., 2006).  In a small stream in 

western Washington, Brosofske et al. (1997) showed that even with a more conservative 

buffer zone, the microclimate conditions near some streams were altered.  Chen et al. 

(1995) also discussed the effect of clear-cut on microclimate.  A temperature rise as much 
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as 11 °C was observed even though a partial buffer strip of trees and shrubs was left in 

place to provide shades for the stream (Hewlett and Fortson, 1982).   

 

Theurer et al. (1985) have studied the impact of vegetation restoration on the Tucannon 

River (USA).  This vegetation has decreased mean daily and maximum water 

temperatures to improve the quality and availability of aquatic habitat.  Maximizing 

riparian vegetation along streams can considerably reduce the lethal stream temperatures 

for aquatic habitat as reported by Chen et al. (1998).  Since small streams (shallow depth 

and small discharge) are very sensitive to ambient air temperature and solar radiation, 

buffer strips or riparian vegetation should be protected along small streams suffering from 

timber harvesting (Mitchell, 1999).  Riparian vegetation can also help regulate water 

temperatures and decrease the amplitude of the diel temperatures by moderating daytime 

high temperatures and low temperatures at night (Leblanc and Brown, 2000).  Webb and 

Crisp (2006) examined the outcome of planting coniferous forests on a stream’s thermal 

regime.  Mean water temperatures were lowered by approximately 0.5 °C with the largest 

reduction being observed in summer.  Johnson (2004) studied a reach having a width of 

150 m under the influence of experimental shading.  This study showed that maximum 

water temperatures declined significantly in the shaded reach, but minimum and mean 

temperatures were not modified.   

 

Bartholow (1991) investigated the impact of irrigation on water temperature on La Poudre 

River in Colorado.  He concluded that an increase of 13- 23% in riparian vegetation, with 

an increase in discharge of 3 m3 s-1, could maintain a water temperature within acceptable 

levels.  In some cases, the riparian buffer zones have been shown to decrease the loss of 
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energy of a stream by acting as a protective cover (Murray et al. 2000).  The strongest 

effect of air temperature and relative humidity can generally be measured within 10 m of 

a stream, although buffer zones of 30 m in width were suggested for three streams in 

western Oregon (Rykken et al., 2007). 

 

Zwieniecki and Newton (1999) studied the impact of variable buffer zone width on river 

water temperatures.  After timber harvesting, they observed a warming trend along the 

river to a distance of 150 m from the buffer zone.  They concluded that even with timber 

harvesting, buffer zones were adequate to protect streams against warming, with the 

exception of a few small streams.  Davies and Colley (2000) suggested a forest buffer 

width of at least 40 m to protect streams in New Zealand.  Wilkerson et al. (2006) studied 

15 streams in western Maine having different treatments of timber harvesting, namely 

clearcutting with and without a stream buffer, partial cuts, and un-harvested zones.  

Streams without a buffer zone experienced an increase in weekly mean water 

temperatures of 1.4 °C to 4.4 °C.  They concluded that an 11 m buffer width was required 

to protect against the effects of clear-cutting. 

 

Beschta (1997) studied the relationship between riparian vegetation, shade and stream 

temperatures.   He found that riparian vegetation could directly and indirectly affect 

stream temperatures.  Riparian vegetation protects the water surface from sunlight and 

therefore increases solar inputs.  Beschta (1997) also found that an un-shaded stream 

absorbs more than 90% of the solar energy.  This study showed that less riparian 

vegetation can also cause an increase in water temperature as a result of erosion which 

causes widening of the bed and reduction of the water depth.  However, other studies 
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showed no clear relationship between the forest buffer strip width and the warming of 

streams (Bourque and Pomeroy, 2001).  Buffer zones were not sufficient to protect stream 

temperatures in the Cascade Mountain Range in western Washington (Dong et al., 1998).  

Forest buffers provided minimum protection for high stream temperature periods in July, 

but were more effective in early and late summer.  Some temperature models have also 

included a shading effect to improve their predictability (Tung et al., 2007).  Buffer 

protection against the increase in water temperature is a function of water volume, the 

stream width, the structure and orientation of vegetation and the area exposed to sun and 

solar radiation (Larson and Larson, 1996). 

 

2.3.2 CLIMATE CHANGE 

Many studies have looked at the impact of climate change on river water temperatures 

(Meisner, 1990).  However, the impact of climate change is difficult to predict due to a 

lack of long-term water temperature data (Webb, 1996).  In eastern Canada, the air 

temperature is expected to increase by 2 °C to 6 °C in the next 100 years (Parks Canada, 

1999).  Such an increase will greatly affect stream water temperatures.   

 

Kjellström et al. (2007) have studied monthly mean water temperatures from 1901-2000 

in three Austrian rivers.  Comparison with historical data showed that the predicted 

changes in extreme temperatures are larger than the natural variability observed during 

the last century.  Extreme temperatures are expected to be greater with climate change.  

For example, cold temperatures in winter are to decrease and warm summer temperatures 

are projected to increase.  .  Studies have shown that long-term trends can be influenced 
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by catchment characteristics, and contrasts between headwater tributary, outlet and 

mainstream are observed (Webb and Nobilis, 2007). 

 

Studies conducted on Fraser River (BC) established that climate change could modify the 

arrival of peak flow and raise summer temperatures (Morrison et al. 2002).  Summer 

water temperatures were predicted to increase by 1.9 °C. This study showed that the 

number of days exceeding 20 °C could also increase.  Another study showed that the 

greater increase in water temperatures would not be in summer, as reported in most 

studies, but in autumn and winter (Moore et al., 1997).  According to different scenarios 

of climate change, global warming could extirpate some aquatic species or modify their 

distribution in river systems (Minns et al., 1995; Mohseni et al., 2003).  Results by Minns 

et al. (1995) showed a decline in precipitation and in the number of rainy days, as well as 

an increase in annual maximum temperatures under climate change scenarios. An 

increase in water temperatures combined with a predicted reduced precipitation could 

greatly affect the water quality of streams (Nimikou et al., 2000).   Morrill et al. (2005) 

are predicting an increase of 2 °C to 3 °C in stream temperatures resulting from an 

increase of 3 °C to 5 °C in air temperatures.  The River Dee in Scotland has experienced 

an increase in mean daily maximum stream temperatures in winter and spring since the 

1960’s (Langan et al., 2001).  Foreman et al. (2001) estimated a warming of 0.022 °C per 

year (1953-1998) on the Fraser River tributary (BC) due to climatic warming effects. 

 

Increases in summer water temperatures due to climate change could cause the dissolved 

oxygen in the water to decrease and aggravate the effects of acid precipitation, 

threatening the growth and life of many aquatic species (Hill and Magnuson, 1990; 
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Schindler, 2001; Gooseff et al., 2005).  Major reductions in stream habitat could result 

from climate warming for cold and cool water fish species (Eater and Scheller, 1996).  

Changes in growth rate of fish may be possible, especially in spring and autumn, caused 

by the increase of water temperature (Hills and Magnuson, 1990).  Global warming may 

also increase groundwater temperatures, affecting the incubation of eggs within the 

stream substrate (Meisner et al., 1988).  Hrachowitz et al. (2010) have shown that under a 

climate change scenario with an increase of 2.5 °C or 4 °C in air temperatures, the 

thermal habitat of Atlantic salmon and brown trout could potentially be altered. 

 

Cooter and Cooter (1990) predicted that water surface could increase up to 7 °C in the 

southern United States.  Mohseni et al. (1999) studied 803 streams from the United 

States.  From these 803 streams, only 39 were found not to be influenced by climatic 

change.  The other 764 streams are projected to increase by 2 °C to 5 °C of their mean 

annual temperature.   

 

Under an atmospheric CO2 doubling scenario, Pilgrim et al. (1998) estimated an average 

4.1 °C increase in stream temperature.  Tung et al. (2006) predicted an increase of 0.5 °C 

to 2.9 °C in annual average stream temperatures.  When studying forcing parameters, 

Mohseni and Stefan (1999) showed that water temperatures cannot rise indefinitely due to 

evaporative cooling at high air temperatures.  Upper bound stream temperature represents 

the highest temperature a stream can physically attain without anthropogenic influences 

(Mohseni et al., 2003).  Climate change effects on stream temperatures will be less than 

to the changes to air temperature (Bogan et al., 2006), mainly due to evaporative cooling.   
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Another study stated that under a climate change scenario, all water coming from surface 

overflows (dams, reservoir and lakes) are going to experience the highest impact 

(Sinokrot et al., 1995).  Riparian vegetation is a proposed solution to minimize the 

increase of water temperatures due to climate change (Cooter and Cooter, 1990).  

 

2.3.3 STREAMFLOW  

Stream temperatures can be as sensitive to streamflow as to meteorological parameters 

(air temperature, humidity and solar radiation) (Gu and Li, 2002).  Decreases in 

streamflow have been shown to increase water temperatures (Morse, 1972; Dymond, 

1982; Hockey et al., 1982; Sinokrot and Gulliver, 2000).  This becomes more severe with 

higher air temperatures.  Policies and management options should include streamflow as a 

critical water quality parameter by increasing flows (decreasing water temperatures) to 

protect aquatic habitat (Neumann et al., 2006).   

 

Stream flows have a greater impact on stream temperatures over short time scales (e.g. 

hourly) and for large streams (Webb et al., 2003).  A modification in the flow regime can 

also affect water temperatures in rivers, like a reduction by extraction or diversion of 

water for hydroelectric projects (Morse, 1972).  This situation can increase water 

temperatures by 1 °C to 2 °C.  Extraction of water in a stream can reduce its thermal 

capacity and results in higher maximum stream temperatures and lower minimum stream 

temperatures (Dymond, 1982).  Sinokrot and Gulliver (2000) confirmed that a reduction 

in discharge could influence the maximum temperature during low flows in summer and 

that an increase in discharge could not eliminate, but lower, the risk of occurrence of high 

temperatures.  Hockey et al. (1982) studied this type of impact on the Hurunui River 
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(New Zealand) using a deterministic model.  Stream flow was reduced from 62 m3 s-1 to 

10 m3 s-1 and water temperatures exceeded 22 °C for more than six hours.   

 

The thermal regime of rivers with downstream reservoirs tends to react differently than 

unregulated rivers.  Thermal impacts of regulated rivers include the rise in mean water 

temperatures, the delay of the annual cycle and the reduction of diel fluctuation (Webb 

and Walling, 1996). Thermal pollution caused by heat discharges from power plants or 

wastewater treatment plants can be harmful to aquatic species by increasing the risk of 

occurrence of high water temperatures (Bradley et al., 1998; Wright et al., 1999).  

Increasing stream discharge can reduce the amplitude of daily temperature variation, 

lower the daily maximum water temperature, and reduce the amplitude of water 

temperatures over a day (Gu, 1998).  Daily maximum stream temperatures are more 

sensitive to flow rate change than daily mean stream temperatures (Gu et al., 1998; Gu 

and Li, 2002).  Thermal regimes downstream of reservoirs are very complex to model as 

they depend on many factors (Webb and Walling, 1997).  The warming trend of water 

temperatures during open water conditions following the construction of a reservoir on 

the Lena River watershed could result in earlier snowmelt (Liu et al., 2005). 

 

Water diversion impact in mountain streams was studied by Meier et al. (2003).  This 

study showed that water diversion can cause an increase of summer stream temperature 

(3.7 °C) and a decrease of winter stream temperature (1.8 °C). High stream temperatures 

caused by water diversion could increase thermal stress to migrating sockeye salmon 

(Mitchell et al., 1995).  Morin et al. (1994) estimated an increase of 1 °C to 2 °C in 

stream temperature due to water diversion on the Moisie River. 
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2.4 WATER TEMPERATURE MODELS 

Water temperatures models can be classified into two groups: Deterministic or statistical 

(Caissie, 2006).  The statistical approach predicts water temperatures by relating water 

temperatures to relevant meteorological parameters (usually air temperature).  The 

deterministic model considers the cause and effect relations between meteorological 

parameters and the river ecosystem (Raphael, 1962; Morin and Couillard, 1990, Morin et 

al., 1994).   Each approach has strengths and weaknesses; however, when comparing 

performances, very few differences are generally observed (Marceau et al., 1986). 

 

2.4.1 DETERMINISTIC MODELS 

Deterministic models can predict changes in water temperatures when a stream is subject 

to thermal pollution (Hills and Viskanta, 1976), climate change (Gooseff et al., 2005), 

land use (Leblanc et al., 1997) or flow reduction (Morin et al., 1994; Mitchell et al., 

1995; Meier et al., 2003) among others.  Deterministic models are well adapted to 

thermal effluent problems (mixing effluent) and flexible when dealing with changes in 

input parameters and different scenarios (Caissie, 2004).  They are also very useful for 

environmental impact studies (Marceau et al., 1986; Morin et al., 1994).  The major 

disadvantage of this type of model is the large number of input parameters required to run 

the model since most meteorological parameters are not usually available from weather 

stations.  Some of the most commonly used parameters are the net shortwave radiation, 

net longwave radiation, convection, evaporation/condensation, precipitation, streambed 

(sediment/geothermal), groundwater and friction (Caissie, 2004).  The two most 

important parameters in deterministic models were found to be air temperature and solar 

radiation (Sinokrot and Stefan, 1994).  For example, Webb and Zhang (2004) calculated 
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the heat budget of four streams in Devon UK and solar radiation was found to be the main 

heat source, whereas longwave radiation was the main heat loss. 

 

Brown (1969) used an energy balance model to predict hourly water temperatures on 

three different streams in Oregon.  He established that for un-shaded reaches, net all-wave 

radiation was the predominant energy source during the day, but that evaporation and 

convection were not to be neglected, since they accounted for around 10% of the total 

energy exchange.  Conduction of heat was found to be important mainly in bedrock 

bottom streams.  Up to 25% of the energy absorbed was observed to transfer to the bed. 

The heat budget of a stream can also be influenced by channel morphology, valley 

topography, riparian vegetation, stream substrate and river regulation (Webb and Zhang, 

1997).  Some studies have successfully modeled river water temperatures under ice cover 

conditions (Hammar and Shen, 1995; Shen et al., 1995).  Caissie et al., (2007) have used 

a deterministic model to predict water temperatures in the Miramichi river system (NB). 

Solar radiation accounted for most of the energy input.  Longwave radiation and 

evaporation were similar but significant in low relative humidity, high wind speed and 

warm weather.  Convective heat flux was small, but not negligible in the heat budget, 

since it can influence the variation of water temperatures, i.e., positive or negative heat 

flux (Caissie et al., 2007).  The potential sources of errors identified in this study were 

attributed to the assumption of the shading factor being constant throughout the year, the 

influence of snowmelt in spring, and not considering groundwater contribution.  Troxler 

and Thackston (1977) also used a deterministic model and predicted the energy budget 

for temperature changes downstream of hydroelectric installations. 
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Leblanc et al. (1997) used a deterministic model to observe the effects of land use on 

water temperature in unregulated urban streams.  Sensitivity analyses have shown that 

shade/transmissivity of riparian vegetation, groundwater discharge, and stream width had 

the greatest influence on stream temperature (Leblanc et al., 1997; Leblanc and Brown 

2000).  Gaffield et al. (2005) used an energy budget model to predict summer 

temperatures in small streams (south-western Wisconsin, USA).  This study found that 

the most important factors controlling summer stream temperatures were the inflow of 

groundwater, shade of riparian vegetation, and channel width.    Meteorological data 

coming from regional meteorological stations or microclimate at the stream level can both 

be used in deterministic models. However, recent studies have shown that microclimate 

data seem to better reflect the heat fluxes, especially for smaller streams with important 

vegetation canopy (Benyahya et al., 2010).  

 

The following sections describe the most common parameters included in deterministic 

water temperature models namely: Solar radiation, longwave radiation, evaporation, 

convection, advection and conduction. 

 

2.4.1.1 SOLAR RADIATION 

Solar radiation is the radiant energy emitted by the sun.  Solar radiation accounts for most 

of the input energy in most of the studies using a heat budget model (Webb and Zhang, 

1997, 1999, 2004; Younus et al., 2000; Johnson, 2004; Webb and Crisp, 2006; Caissie et 

al., 2007).  This component can be measured using sensors (e.g., radiometers or 

pyranometer devices) or estimated using numerous equations (Allen, 1997; Dingman, 
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2002). Most studies measure the incoming solar radiation with a pyranometer (Evans et 

al., 1998; Caissie et al., 2007; Brown and Hannah, 2008; Hannah et al., 2008). 

 

The constantly changing spatial relationship between the sun, the canopy closure of 

riparian vegetation and the amount of solar energy reaching a stream is very complicated 

to model (Beschta, 1997).  As such, Chen et al. (1998a) have developed a model to 

estimate the solar radiation using the sun position, stream localization and orientation and 

the riparian shading characteristics.  Using a single shade value may introduce errors by 

ignoring variability within each vegetation category.  The angle of sunrays may modify 

the value of direct and diffuse radiation by controlling the length of the atmospheric path 

through which it travels and controls the relative surface area on which it intersects 

(Raphael, 1962).  Samani (2000) proposed a method to estimate the solar radiation using 

only latitude and maximum and minimum air temperature.  Yang and Koike (2002) 

developed a method to estimate surface solar radiation from upper-air humidity.  Yang 

and Koike (2005) presented a model to estimate hourly and daily solar radiation from 

sunshine duration, air temperature and relative humidity. Dorvlo et al., (2002) developed 

an artificial neural network model to estimate solar radiation from latitude, longitude, 

sunshine hours and the month of the year.  Other studies, such as Allen (1997), estimated 

daily and monthly solar radiation for clear sky days using minimum and maximum air 

temperature measurements.  This model was very effective for monthly solar radiation, 

but not as accurate in smaller time steps.  Ringold et al. (2003) recommended the use of 

hemispheric imagery to estimate stream solar exposure, in which data could be collected 

at multiple sites and averaged over an area. 
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2.4.1.2 LONGWAVE RADIATION 

When it comes to longwave radiation, most studies have included the longwave radiation 

emitted from the atmosphere and the water, but few have included the radiation coming 

from the forest canopy (Rutherford et al. 2007).  The longwave radiation coming from the 

forest canopy was shown to be important for small and medium size streams (Benyahya 

et al., 2010).  The longwave radiation was also found to be the main source of heat loss in 

many heat budget models (Webb and Zhang, 2004; Caissie et al., 2007).  Most studies 

have estimated the longwave radiation using the Stefan-Boltzmann Law (Caissie et al., 

2007; Benyahya et al., 2010; Singh and Singh, 2001).  In winter, the longwave radiation 

increases and can surpass solar radiation, causing the net radiation to be an energy sink 

(Hannah et al., 2004; Webb and Zhang, 2004). The long-wave radiation is relatively 

constant over the day and experiences highest values during clear sky periods in summer 

(Sridhar et al., 2004). 

 

2.4.1.3  EVAPORATION 

When the water vapour pressure in the air is less than the saturated vapor pressure at the 

water surface, water evaporates into air, thus removing heat from water in two ways: 

energy required to evaporate (most important) and bodily removal of heat contained in 

the water removed by evaporation (Raphael, 1962).  There are many evaporation 

equations available, depending on the type of data available, making it very difficult for 

practitioners to select the appropriate method.  Most evaporation equations were 

developed to estimate the evaporation rate for lakes (Rasmussen et al., 1995; Sing and 

Xu, 1997a; Rosenberry et al,. 2007).  Methods of measure or estimation of the 

evaporation rate can be divided into five groups (Xu and Singh, 2001): 1) water-energy 
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budget (Bolsenga, 1975; Finch and Gash, 2002; Martinez et al., 2006), 2) mass-transfer 

method (Morin and Couillard, 1990; Sinokrot and Stefan, 1993), 3) combination of 

available energy and aerodynamic terms using the Penman equation (Penman, 1948), 4) 

radiation based methods  using the Priestley-Taylor equation (Priestley-Taylor, 1972) and 

5) temperature based methods (Thornwaite, 1948). The efficiency and results of the 

estimation of evaporation is highly dependent on the type of equations used (Benyahya et 

al., 2010) and can be site specific (Singh and Xu, 1997a). 

 

The Penman method combines the aerodynamic and the radiation process to estimate the 

evaporation rate (Penman, 1948).  The main disadvantage of the Penman method is in the 

determination of the net radiation and the vapor pressure deficit needed in the equation. 

Therefore many studies have used modifications of this method to simplify the 

calculations (Valantzas, 2006).  The Penman-Monteith equation has been widely used 

because of its detailed theoretical base and because it can accommodate small time 

periods (e.g., hourly, daily) (Samani, 2000).  However, the extensive records of 

climatological data that this method requires are often not available. Most radiation based 

methods used the net radiation to estimate the evaporation (Xu and Singh, 2000).  One of 

the most commonly used radiation-based methods is the Priestly-Taylor equation 

(Priestley-Taylor, 1972; Stewart and Rouse, 1976).  This method was used by Finch and 

Gash (2002) where they developed a simple finite difference model to predict the change 

in heat storage, and where the evaporation rate of a reservoir was estimated.  The mass-

transfer methods are also widely used in studies dealing with the evaporation rate and 

heat fluxes (Morin and Couillard, 1990; Sinokrot and Stefan, 1993).  This approach has 

been the most widely used method within the stream temperature modeling literature.  
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For time steps shorter than daily (e.g., hourly), the net radiation approach does not seem 

to have a significant relationship with open water evaporation (Grander and Hedstrone, 

2011).  This study showed that the most significant parameters affecting the hourly 

evaporation rate were wind speed, difference between water-land temperatures and 

vapour pressures.  The vapor pressure deficit was found to be the meteorological variable 

with the greatest correlation to pan evaporations at an hourly time scale (Xu and Singh, 

1998).  Singh and Xu (1997b) also found that vapor pressure gradient and wind speed 

were the most influential parameters for estimation of daily and monthly evaporations.  In 

this study, the difference in vapor pressure gradient and wind speed was included in the 

estimation of evaporation rates using the mass-transfer method. 

 

Measuring evaporation rates at small time-steps is a relatively difficult process, needing 

very high resolution devices.  Evaporation models usually use meteorological parameters 

as inputs, since they are readily accessible and easily measured (Tan et al., 2007).  

Andersen and Jobson (1982) compared two well-known techniques for estimating annual 

lake evaporation using climatological meteorological data.  The dominant factors 

influencing evaporation were the solar radiation, air temperature, water temperature and 

relative humidity (Keskin and Terzi, 2006). 

 

Longwave radiation and evaporation are of similar magnitude within the energy budget 

during the summer period (Caissie et al., 2007).  Evaporation contributes to the cooling of 

rivers and it is mainly controlled by wind speed and relative humidity (Gaffield et al., 

2005).  As such, evaporation is a major component for heat loss in rivers, and this heat 
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loss can sometimes surpass the longwave radiation heat loss (Webb and Zhang, 2004; 

Caissie et al., 2007)).   

 

Dace (1972) presented a simple method for estimating evaporative heat losses from water 

bodies with adjustments for atmospheric stability. Some studies have shown that ANN 

models can estimate evaporation rates more accurately than the radiation based, mass-

transfer and temperature-based models, but were more demanding on training data (Tan 

et al., 2007).   

 

2.4.1.4 CONVECTION 

Heat transfer by convection is transferred between the stream surface and the atmosphere 

whenever a difference between air and water temperature exists.  This heat transfer at the 

stream surface is usually a small component of heat budget models (Beschta, 1997; 

Caissie et al., 2007; Benyahya et al., 2010).  Many studies have used the approach of 

Bowen (1926) to calculate the convective heat transfer.  The process of evaporation of the 

water surface into the air is similar to that of the conduction of energy at the water/air 

surface.  Due to this similarity, Bowen (1926) represented a ratio between the heat losses 

by conduction to that by evaporation.  Driving forces are the wind speed and the 

temperature gradient between air and water (Brown, 1969).  Convective heat is generally 

small but not negligible, since it reflects the variation of water temperatures as a function 

of the difference between air and water temperature (Caissie et al., 2007). 
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2.4.1.5 ADVECTION 

Advective heat flux can be in the form of precipitation (Kim and Chapra, 1997), tributary 

inflows, or groundwater inflow.  Streams with important sources of groundwater are less 

influenced by air temperature in explaining stream temperature variability (Teague et al., 

2007).  Advective heat fluxes coming from groundwater, reservoir releases, or wastewater 

discharge can have an impact on the thermal regime of rivers.  This impact can have an 

influence many kilometers downstream or until the heat exchange with the atmosphere 

has again taken over the exchange process (Sinokrot and Stefan, 1993).  Groundwater 

was found to have a greater influence at upstream sites within a watershed and under 

summer low-flow conditions (Webb and Zhang, 1999).  Story et al. (2003) found that 

groundwater inflow was responsible for approximately 40% of the decrease in daily mean 

maximum water temperatures calculated for one afternoon at Baptiste Creek (BC).  The 

lack of agreement between observed and predicted monthly stream temperature is often 

related to groundwater contributions, as reported in Webb and Zhang (2004).  Caissie et 

al. (2007) developed a heat budget model for Catamaran Brook (NB).  Groundwater flow 

was shown to contribute up to 91% of the total streamflow during small storm events 

(Caissie et al., 1996) and its impact on river water temperature during such events 

remains unknown. 

 

The role of precipitation in the heat budget of streams is usually ignored since it is 

typically less than 1% of the total energy input (Brown, 1969; Webb and Zhang, 1997; 

Evans et al., 1998; Sridhar et al., 2004).  These studies showed that the overall 

precipitation heat flux is small; however, storm events have been shown to have an 

impact on stream temperature dynamics.  For instance, Brown and Hannah (2007) studied 
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stream temperature dynamics of an alpine river over two summers (2002 and 2003).  

They showed that over 75% of storm events produced a decrease in water temperatures 

(up to 10.4 °C).  In some cases, increase of water temperatures were also observed; 

however, changes were less significant (up to 2.3 °C).  Precipitation events influence not 

only stream temperatures but also streambed temperatures.  Brown et al., (2006) showed 

that streambed temperatures decreased within the substrate up to 0.40 m in depth, 

following an important precipitation event.   

 

2.4.1.6 CONDUCTION 

Some studies have neglected the heat exchange at water and riverbed interface, i.e., 

streambed fluxes (Caissie, 2004; Sridhar et al., 2004), but others have used it in their 

modeling of river water temperatures (Brown, 1969; Jobson, 1977; Sinokrot and Stefan, 

1993; Kim and Chapra, 1997; Webb and and Zhang, 1997). Bed conduction has been 

shown to be an important parameter in heat budget of water depth of shallow streams (3 

m or less) (Jobson, 1977).  Conduction can be important for the energy budget of rock-

bottom streams, but to a lesser degree for gravel or mud bed streams (Brown, 1969; 

Sinokrot and Stefan, 1993). The importance of bed conduction increases as the diel 

variability in stream temperatures increases (Jobson, 1977).  Bed heat flux has been 

shown to be an important energy sink during the spring and summer (Jobson, 1977; 

Hondzo and Stefan, 1994; Webb and Zhang, 2004), whereas it is mostly an energy source 

in autumn (Hannah et al., 2004).  Streambed heat conduction may have a significant 

effect on the diel temperatures in small mountain streams, as reported in some studies 

(Vugts, 1974; Comer and Grenney, 1977; Sinokrot and Stefan, 1993).   
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Hondzo and Stefan (1994) showed that streambed heat flux was as large as 40 W m-2.  

This represented an equivalent of a 0.8 °C temperature change per meter depth of the 

river in their study.  Jobson (1977) presented a temperature model that accounted for bed 

conduction without requiring temperature measurements within the bed.  His procedure 

required an estimate of the gross thermal properties of the bed, such as the thermal 

diffusivity and heat-storage capacity.  In the study by Webb and Zhang (2004), the bed 

conduction contribution to the annual total heat flux was 4% in regulated reaches and 7% 

in moorland reaches.   Bed conduction coming from coniferous reaches had a smaller 

contribution (<1%) to the annual total heat flux. 

 

Daily average stream temperatures are not very sensitive to the streambed thermal 

conditions; however, it becomes important for short time scales, i.e.,   for the prediction 

of hourly stream water temperatures (Sinokrot and Stefan, 1994).  Other studies have also 

concluded that modeling hourly water temperatures needs to include streambed thermal 

conductivity (Jobson, 1977; Sinokrot and Stefan, 1993).  Although bed heat conduction 

can be small compared to other energy fluxes, it can act as an important energy sink 

during the daytime to compensate for the heat gains occurring at the water surface (Leach 

and Moore, 2011). 

 

Intragravel bed temperatures are important for aquatic resources, such as for the 

development of salmonid eggs (Acronley, 1999).  In this study, streambed temperatures 

were found to be important in the estimation of timing of different stages of brown trout 

embryo development.  The fluctuation of streambed temperatures decreases with depth, to 

a depth where temperatures are relatively stable.  Bed conduction generally acts as a heat 
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sink in the summer months and a heat source in the winter months (Webb and Zhang, 

2004), since streambed temperatures are usually higher than stream water temperatures 

during the winter and lower in summer (Ringler and Hall, 1975). 

 

2.4.2 TEMPERATURE EQUILIBRIUM CONCEPT 

Deterministic models can become very complex if all heat fluxes are considered.  The 

equilibrium temperature model was first developed to simplify the expression of the total 

heat flux at the water surface (Edinger et al,. 1968; Chaudhry et al., 1983; Jeppesen and 

Iversen, 1987).  The equilibrium temperature is the stream temperature at which no heat 

exchange would be occurring at the stream.  With the equilibrium temperature concept, 

the net flux at the water surface is expressed using fewer meteorological parameters 

compared with conventional deterministic models.  As such, the total heat flux at the 

water surface is assumed to be proportional to the difference between the water 

temperature and an equilibrium temperature Te (Caissie et al., 2005).  The resulting 

equation is a linear function of water and equilibrium temperatures which defines the total 

heat flux (Edinger et al., 1968).  Some studies have used the equilibrium temperature 

concept to study the thermal regime in rivers (LeBosquet, 1946; Edinger et al., 1968; 

Dingman, 1972; Novotny and Krenkel, 1973; Caissie, 2004). 

 

Larnier et al. (2010) developed an equilibrium temperature model to estimate daily water 

temperatures on the Garonne River (France) from 1988 to 2005.  The model was 

calibrated for higher water temperatures (i.e., temperatures above 20 °C), to focus on 

important aquatic conditions, particularly for migrating freshwater fishes.  Equilibrium 
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temperature was calculated from meteorological parameters using the heat budget 

equations.   

 

Mohseni and Stefan (1999) used the equilibrium temperature concept to examine the 

relationship between weekly air and stream temperature, especially at high temperatures 

under climate change.  They showed that the relationship between weekly air and stream 

temperatures resembles an s-shaped variation, although a linear relationship can be 

assumed at air temperatures between 0 °C and 20 °C.  The levelling out of water 

temperature at air temperatures over 20 °C is mainly due to higher evaporative cooling. 

 

Marcé and Armengol (2008) examined three different water temperature models: 

deterministic, equilibrium temperature and a hybrid (combination of both). Even though 

the equilibrium temperature model had a good performance, they highlighted the 

limitation of the model for air temperature higher than 19 °C, where the linear 

relationship between the equilibrium and air temperature lessens.   

 

Herb and Stefan (2011) developed a modified temperature equilibrium temperature model 

and applied it to two cold-water tributaries of the Mississippi River.  This model differs 

from others as it considers groundwater inflow rates and groundwater temperatures to 

estimate daily average stream temperatures, which is usually not included in most models.  

Their model also included climate conditions, riparian shading and stream width, which 

can be useful for studies of cold-water reaches and climate change. 
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An equilibrium temperature model was applied to two thermally different streams of the 

Miramichi River (Catamaran Brook and Little Southwest Miramichi) for estimating daily 

mean stream temperatures (Caissie et al., 2005).  In this study, the equilibrium 

temperature was expressed as a linear function of air temperature, and the thermal 

exchange coefficient was assumed constant throughout the study period.  The model 

generally performed well; however poorest performances were observed in spring caused 

presumably due to snowmelt conditions.  The best performances were observed during 

late summer and autumn when water levels are generally at the lowest of the open water 

period. 

 

Bogan et al. (2003) have showed that weekly stream temperature was related to weekly 

equilibrium temperature for 596 U.S. Geological Survey stream gaging stations  in the 

eastern and central United States (for water temperatures over 0 °C).  This study has also 

showed that shading and sheltering of streams was important in the modeling of stream 

temperatures.  For streams that were more sheltered and shaded, weekly equilibrium 

temperature was a better estimator of weekly stream temperature.  The effect of shading 

was found to be even stronger than sheltering (Bogan et al., 2004). 

 

Equilibrium temperature models can be used to examine the effect of different 

meteorological parameters.  Gu (1998) studied the relationship between stream discharge 

and stream temperatures.  This study showed that increasing river discharge can help 

decrease the amplitude of daily variations as well as daily maximum water temperatures 

until a critical point, where the effect becomes insignificant.  Gu et al. (1998) found that 

the variation of daily maximum temperatures was more related to flow than the daily 
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mean temperatures.  Krajewski et al. (1982) developed a graphical technique to estimate 

the equilibrium temperature and the heat exchange coefficient using solar radiation, cloud 

cover, air temperature, wind speed, relative humidity and atmospheric pressure. 

 

2.4.3 ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANN) are data processing techniques used by scientists to 

extract maximum information from time series.   ANN can be used in different problems 

among scientists such as engineers, biologists or economists: Pattern classification, 

clustering/categorization, function approximation, predicting/forecasting, optimization, 

content-addressable memory and control (Jain et al. 1996).  The development of ANNs 

began 50 years ago, aiming to understand the human brain and to imitate its functions.  In 

the last decade, this technique has grown in popularity due to the development of more 

sophisticated algorithms and the availability of powerful tools for data processing. 

 

ANN is a parallel computing system consisting of an extremely large number of simple 

processors with many interconnections (Jain et al., 1996).  It resembles the brain in two 

ways: Knowledge is acquired by a learning process and information is stored by 

interneuron connection strengths (Haykin, 1999). The main benefits of using ANN as a 

computing tool are the large parallel-distributed structure and its ability to learn and 

generalize (Haykin, 1999).  In most hydrological studies, ANN is used for function 

approximation, which consists of estimating an unknown function with training patterns 

(input and output data). 
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The basic elements used in an ANN are called neurons, which are non-linear algebraic 

functions, parameterized and with bound values (Dreyfus et al., 2002).  The signal goes 

through each neuron associated with a weight (w) and is modified by a transfer function 

(f).  An ANN consists of a finite number of layers where each layer is composed of a 

number of neurons.  The entrance of the ANN is called the input layer, and the results are 

obtained at the output layer.  The inputs and outputs can be represented by many nodes 

such as xi and yk.  The intermediary layers are called the hidden layers. At each node, the 

information is processed and passed on to the following layer with connection strength 

(weight).  There are connection weights between the input and hidden nodes (iwij) and 

connection weights between hidden and output nodes (lwjk). The output is a function of a 

summation and a transformation of different nodes.   

 

A multilayer network is composed of a set of sensory units (input layer), one or more 

hidden layers of computation nodes and an output layer of computation nodes (Smith, 

1993).  The input signal propagates through the network in a forward direction, on a 

layer-by-layer basis.  Errors are calculated between predicted and observed values and the 

network is then modified to minimize the overall errors.  This optimization of the network 

is done using algorithms.  The most popular algorithm is the error backpropagation 

algorithm based on the error-correction learning rule.  It is a popular algorithm mainly 

due to its simple conception, to its effective computation, and to its efficiency (Smith, 

1993).  Hidden nodes and the high degrees of connectivity allow a backpropagation 

network to learn very complex tasks (Haykin, 1999).   
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Many factors can influence the sample size used with an ANN, like the choice of the 

modeling technique, the target function and the noise in the data.  In fact, the sample size 

increases with the complexity of the function and the noise to maintain accuracy and 

prevent overfitting.  The largest sample available should be used as long as it fits in the 

memory or storage.  Smith (1993) recommends dividing the sample into three 

subsamples: Training, validation, and testing.  The training subsample generally accounts 

for approximately 2/3 of the original sample size and it is used to calculate the weights.  

The validation and testing of subsample are commonly grouped together (and consist of 

1/3 of the sample) to measure performance of the network.   

 

Since the 1990’s, ANNs have been used in the field of hydrology, namely in modeling of 

precipitation and run-off, water demand predictions, groundwater and water quality 

(Govindaraju, 2000a).  ANNs have become interesting in those fields for many reasons 

(Govindaraju, 2000a).  The main reason is their capacity to recognize the relation 

between the input and output variables without any physical explanations.  It is very 

useful in hydrology because most of the events are non-linear, very complex and 

sometimes unknown.  ANNs can also adapt to solutions with time to make up for 

condition changes.  They also work well with data having bias, and once calibrated, they 

are simple to use. 

 

Govindaraju (2000b) mentioned that the first applications of ANN in hydrology were in 

precipitation and run-off modeling (Minns and Hall, 1996; Tokar and Johnson, 1999; 

Thirumalaiah and Deo, 2000; Tokar and Marcus, 2000; Castellano-Mendez et al., 2004).  

ANN models can also forecast streamflow in rivers using streamflow data from previous 
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days, precipitation and air temperature data (Moradkhani et al., 2004; Nayebi et al., 

2006). 

 

 Zealand et al. (1999) and Jain et al. (2001) developed ANN models to forecast short-term 

water demand.   ANN has also shown to be a good predictor of hourly and daily 

evaporation rates in equatorial regions (Tan et al., 2007), and  have been used to optimize 

the control of municipal water systems (Bhattacharya et al., 2003). 

 

ANNs are extremely useful in processing large amounts of information, like in remote 

sensing.  Islam and Kothari (2000) evaluated ANNs to define, estimate and predict 

remote sensing process and data in hydrology, especially for precipitation. Keskin and 

Terzi (2006) suggested the addition of ANN to other existing models to estimate daily 

pan evaporation from meteorological data.  Rehman (2008) achieved an estimation of the 

global solar radiation using only time of year, air temperature and relative humidity.  

ANN applications could be useful in the design of reservoirs, development of water 

budgets for basins and various other hydrological analyses where other models might be 

inappropriate (Sudheer et al. 2002). 

 

Water quality modeling can be enhanced using ANNs.  For example, they were used in 

Illinois to estimate nitrate concentration in Upper Sangamon River (Suen and Eheart, 

2003).  In another related study, Bowden et al., (2005b) forecasted the salinity in rivers.  

ANNs were found to have lower forecasting errors than other models.  Salinity of the 

River Murray (Australia) was effectively forecasted 14-days in advance (Maeir and 

Dandy, 1996). 
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ANNs are widely use in groundwater modeling.  For example, Shigidi and Garcia (2003) 

showed the utility to approximate the explicit relation of the transmissivity and the 

hydraulic charge described by the groundwater flow equation.  Daliakopoulos et al.  

(2005) used a standard feed-forward ANN to simulate the decreasing trend of the 

groundwater level for the Messara Valley (Greece).   

 

In the literature, only a few studies have applied ANN in stream water temperature 

modeling.  Bélanger et al. (2005) effectively predicted daily water temperatures in 

Catamaran Brook and Little Southwest Miramichi (NB) for over 10 years using only air 

temperatures, time and streamflow as input parameters.  The inputs included were the 

current air temperature (°C), air temperature of the previous day (°C), air temperature two 

days earlier (°C), discharge (m3 s-1) and a trigonometric function of time (days).  The 

overall root-mean-square error (RMSE) between observed and predicted water 

temperatures was 1.06 °C.   

 

Chenard and Caissie (2008) also applied ANN models for Catamaran Brook and Little 

Southwest Miramichi, and modeled daily maximum and mean stream temperatures.  

Eight models using different input variables were tested.  The best ANN model for 

predicting daily mean stream temperatures included eight different input parameters: 

minimum, maximum and mean air temperatures of the current day and those of the 

preceding day, the day of year and the water level.  The best model predicting daily 

maximum temperatures included the same input parameters, except mean daily air 

temperature.  Results were similar to, and better than, other water temperature modeling 

studies using an ANN model.  Overall RMSEs were 0.96 °C and 1.18 °C for daily mean 
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and maximum stream temperature, respectively.  These models were simple to develop 

and apply, and allowed many input and output parameters. 

 

Karaçor et al. (2007) developed a feed-forward artificial neural network to predict the 

maximum stream temperature of Degirmendere River (Turkey) for the five days ahead.  

The ANN was used for 10 river stations using daily water temperature measurements 

from years 1996 to 2004.  The developed feed-forward ANN had six inputs, three hidden 

layers (with 13, 8 and 5 nodes respectively) and two inputs.  The six inputs used were: the 

time of year, the current, previous (day before) and past (8 days before) stream water 

temperatures, and the highest and lowest steam temperature recorded in the last 8 days.    

The outputs are the minimum and maximum stream temperatures for the next five days.  

The ANN model achieved good results, with average absolute prediction of 0.93 °C, 

using only past stream temperature data. 

 

Risley et al. (2003) have used an ANN model to estimate hourly water temperatures.  

This model included numerous meteorological data (air temperature, dew-point 

temperature, shortwave solar radiation, air pressure, and precipitation), riparian habitat 

characteristics (stream bearing, gradients, depth, substrate, wetted widths, and canopy 

cover), and basin landscape characteristics (topographic and vegetative), acquired from a 

geographic information system (GIS).  This model was applied on 148 sites in western 

Oregon over the summer of 1999 (June 21 to September 20, 1999).  Their results showed 

RMSEs ranging between 0.05 °C and 0.59 °C. 
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Sivri et al. (2007) predicted monthly stream temperatures with an ANN model on Firtina 

Creek (Turkey).  They selected a 3-layer network with 5 inputs (local water temperature, 

dissolved oxygen, PH, air temperature and rainfall), 12 hidden nodes and a single output 

(stream temperature).  The training period included monthly data for one year, and was 

validated over the two following years. 

 

2.4.4 STOCHASTIC AND OTHER STATISTICAL TYPES OF MODELS 

Stochastic models estimate water temperatures by using statistical functions with a 

number of independent variables (e.g., air temperature, water temperatures of previous 

days, etc.).  Stochastic models do not need a large number of input parameters like 

deterministic models and therefore this reduces the length of development of the model 

(Marceau et al. 1986).  However, stochastic models are generally site specific and are not 

adapted for environmental impact studies.  Stochastic models can also require a longer 

time series of observations for proper calibration.   

 

Many studies have successfully modeled stream temperature from air temperatures 

(Stefan and Sinokrot, 1993).  Ahmadi-Nedushan et al. (2006) applied stochastic models 

to estimate daily mean stream water temperatures of a large unregulated river (Moisie 

River, QC).  This study related mean daily water temperatures to air temperatures and 

streamflow indices.  They showed that including streamflow indices in stochastic models 

could improve their performance.  Caissie et al. (1998) showed that it was possible to 

predict daily water temperatures for small streams using only air to water relationships.  

Linear regression was sufficiently accurate to predict water temperatures with a mean 

deviation less than 1 °C from the observed temperature (Mackey and Berrie, 1991).  
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Neuman et al. (2003) used an empirical model to predict daily maximum temperature 

(summer period) from daily maximum air temperature and average daily flow.  Benyahya 

et al. (2007) modeled the average weekly maximum water temperatures for Deschutes 

River by using two univariate stochastic methods: autoregressive and periodic 

autoregressive.  On the Nivelle River (France), stochastic models were developed using 

air temperature and streamflow to estimate mean weekly maximum water temperatures 

(Benyahya et al., 2008). 

 

Monthly and weekly time scales produced the best linear relations between air and stream 

temperature (Erickson and Stefan, 2000).  Stefan and Preud’homme (1993) used simple 

linear regression between air temperature and water temperatures to estimate mean daily 

and weekly water temperatures with a standard deviation around 2 °C.  Crisp and Howson 

(1982) predicted 5-day and 7-day mean water temperatures.  They found that the 

relationship between mean air temperature and mean water temperature is approximately 

linear, except for when mean air temperature was below 0 °C.  This study showed that 

adding rainfall or stream discharge only made a negligible improvement in the 

relationship.  Even meteorological data taken 50 km from the study area would produce 

accurate results using regression (Johnson, 2003). Mohseni and Stefan (1999) said that 

linear regression is not always justified because of the nonlinear stream/air relationship. 

 

Caissie et al., (2001) used regression and stochastic models for modeling maximum daily 

stream temperatures.  A Fourier and Sine function was used to model the long-term 

annual component of the stream temperature and a second order Markov process was 

used to model the short-term component.  Johnson (1971) found strong correlation 
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between monthly mean water temperatures and monthly mean air temperatures.  Pilgrim 

et al. (1998) used an air-water relationship to predict the increase of stream water 

temperatures under a climate change scenario.   

 

Doglioni et al. (2008) used an evolutionary polynomial regression to forecast water 

temperature for 5 years, using air temperature as input.  Data were sampled at hourly 

intervals and studied at different time scales (6-hour, 12-hour, 24-hour and 36 hour 

averages).  This approach to modeling stream temperatures may prove cheaper and more 

efficient than the use of deterministic physically-based models, because it only uses air 

temperature data, which are relatively easy to collect and are often widely available.  The 

study was also able to estimate maximum daily temperatures in streams in Western 

Oregon with a precision of less than 1 °C.  Guillemette et al. 2009 used a multivariate 

geostatistical approach to estimate monthly maximum water temperatures.   
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CHAPTER 3: METHODOLOGY AND STUDY AREA 

 

This chapter presents the methodology related to each of the three water temperature 

models, namely: the deterministic model, the equilibrium temperature model and the 

artificial neural network model. This section also presents the study area (Miramichi 

River system) and the two study sites (Catamaran Brook and Little Southwest 

Miramichi).  The instruments used to collect the data are also described.  The last section 

presents three different performance criteria used to test the performance of each water 

temperature model. 

 

3.1 STUDY AREA 

The two reaches (Catamaran Brook and Little Southwest Miramichi River) are located on 

the Miramichi River System (New Brunswick, Canada), which is world renowned for its 

population of Atlantic salmon, salmo salar (Figure 3.1).  This system has an annual 

precipitation ranging from 860 mm to 1365 mm, with a long-term average of 1142 mm 

(Caissie and El-Jabi, 1995).  The mean monthly air temperature varies between -11.8 °C 

(January) and 18.8 °C (July).  The mean annual runoff was estimated by Caissie and El-

Jabi (1995) to be 714 mm, ranging from 631 mm to 763 mm.  The vegetation consists 

mainly of second-growth, mature forest species estimated at 65% coniferous and 35% 

deciduous (Cunjak et al., 1990). 

 

The first reach is located on the Little Southwest Miramichi River (LSWM) at 

approximately 25 km from the river mouth (Figure 3.1).  The drainage basin of the LSMR 
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is 1190 km2 (Johnston, 1997).  The LSWM has a width of approximately 80 m, with an 

average depth of 0.55 m during mean flow conditions.  No lateral variation in water 

temperatures were observed by Caissie et al. (2007), being explained by the well-mixed 

nature of the river.  The forest along the LSWM is mainly composed of 70% hardwood, 

with a presence of 30% softwood (Cunjak et al., 1990).   The canopy closure was less 

than 20%.  

 

The second reach is was located on Catamaran Brook (Cat Bk) approximately 8 km 

upstream of the mouth.  It is the site of a 15-year multidisciplinary hydrobiological 

research study aimed at quantifying stream ecosystem processes and the impact of timber 

harvesting (Cunjak et al., 1990).  Catamaran Brook has a drainage area of 27 km2 at the 

study site, an average stream width of 9 m and a depth of 0.21 m.  Catamaran Brook is 

well-mixed due to a high level of turbulence, similar to LSWM, but the brook is more 

sheltered by streamside vegetation and upland slopes.  The canopy closure for Catamaran 

Brook was estimated at 55%-65% with a forest composition of 60% hardwood and 40% 

softwood (Cunjak et al., 1990). Some characteristics of both streams are listed in Table 

3.1.   

 
 
Table 3.1.  Selected characteristics of Catamaran Brook and Little Southwest Miramichi. 
 

Study site Drainage 
area 

Width Depth Canopy
closer 

Forest 
Composition 

     Hardwood Softwood
Little Southwest Miramichi 11490 km2 80 m 0.55 m 20% 70% 30% 

Catamaran Brook 27 km2 9 m 0.21 m 55-65% 60% 40% 
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Figure 3.1.  Map showing the location of microclimate sites (Catamaran Brook and Little 
Southwest Miramichi River) and the location of the meteorological station.
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3.2 DETERMINISTIC MODEL 

The modeling of stream water temperature has been carried out in previous studies using 

the heat budget approach (Sinokrot and Stefan, 1993; Caissie et al., 2007).  This modeling 

approach uses the general equation for the conservation of thermal energy given by: 
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 (3.1) 

where, Tw is the water temperature (°C), t is the time (hour), x is the distance downstream 

(m), y and z are the longitudinal and vertical distance (m), A is the cross sectional area 

(m2), vx, vy, and vz are mean water velocity in respective directions (m/hour), W is the 

river width (m), Dx, Dy, and Dz are the dispersion coefficients in the respective directions 

(m2 hour-1), cw is the specific heat of water (4.19 x 10-3 MJ kg-1 °C-1), ρ is the water 

density (1000 kg m-3), p is the wetted perimeter of the river (m), Hsurf is the total heat flux 

per area at the surface-water interface (W m-2), and Hbed is the total heat flux per area at 

the streambed-water interface (W m-2). 

 

In water temperature analysis, the average depth conditions are usually assumed 

(neglecting the z component).   In a well- mixed river, water temperature variations along 

the reach are usually more important than the vertical gradient with depth as well as 

lateral temperature variability.  With these assumptions, t equation (3.1) can be reduced to 

a one dimensional equation: 
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(3.2) 

The dispersion along the river reach (Dx) is most often small compared to the heat 

transport by velocity (vx).  Downstream changes in water temperatures are usually small 

compared to the temporal changes.  For example, a study conducted in the McKenzie 

River (Oregon) showed an increase less than 0.09°C/km (Torgersen et al., 2001).   The 

heat flux at both interfaces (water surface and streambed) is important in predicting diel 

temperature variations, especially in small rivers (Brown, 1969; Jobson, 1977; Sinokrot 

and Stefan, 1993).  In this case, the general 0-D model for vertically well-mixed streams 

can be simplified as follows:
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In most rivers and for heat budget purposes, when they are very wide and shallow, the 

wetted perimeter (p) may be approximated by the surface river width (W) (Mackey et al., 

1998).  The wetted perimeter was assumed to be equal to the top water surface width 

because the two studied streams are effectively very wide and shallow.  In fact, the 

average stream width at Catamaran Brook is 9 m with a depth of 0.21 m.  For Little 

Southwest Miramichi, the average river width is 80 m with a depth of 0.55 m.  Therefore, 

the total heat flux at water surface (Hsurf) and from the streambed (Hbed) can be expressed 

as the total heat flux (Ht) using the following equation: 
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  (3.3b) 

where,  

   gbpcelsbedsurftotal HHHHHHHHHH   (3.4) 
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Hs is the net shortwave radiation (W m-2), Hl is the net longwave radiation (W m-2), He is 

the evaporative heat flux (W m-2), Hc is the convective heat flux (W m-2), Hp is the 

precipitation heat flux (W m-2), Hb is the streambed heat flux by conduction (W m-2), and 

Hg is the streambed heat flux by advective groundwater flow (W m-2).  Each of the energy 

fluxes presented in Equation (3.4) are further described below. 

 

A number of studies have used heat budget models to predict variability in river water 

temperatures (Evans et al., 1998; Younus et al., 2000; Caissie et al., 2007; Hannah et al., 

2008); however, few have focused on using stream microclimate conditions as well as the 

streambed heat fluxes in predicting water surface heat fluxes at the hourly time scales.  As 

such, the present study will focus on these three important issues.   

 

A previous study was conducted within the same region using a deterministic model 

(Caissie et al., 2007).  This study used data from a remote meteorological station 

(MetSta) to predict stream water temperatures on a daily basis.  The present study differs 

from Caissie et al. (2007) in that microclimate meteorological data were used in order to 

better estimate heat fluxes and potentially improve the model.  Also, the modeling was 

carried out at an hourly time step rather than at a daily time step.  Stream microclimate 

conditions (i.e., data collected 1 to 2 m above the stream) are important to properly 

estimate water surface heat fluxes because they better represent conditions within the 

river environment.  Otherwise, factors or a parameterization is required to transfer remote 

station data to the stream environment.   
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The longwave radiation emitted by the vegetation canopy has been shown to be important 

for streams with significant overhanging canopy (Benyahya et al., 2010).  Most studies 

have neglected the small amount of energy added by precipitation (Webb and Zhang, 

1997; Evans et al., 1998; Hannah et al., 2008.  Both of these aspects were considered in 

this study.  Streambed fluxes are also important to the thermal regime of rivers, and are 

probably very site specific (Caissie et al., 2007).  Although it has been studied both 

directly and indirectly, a complete understanding of its role has yet to be developed.  

Those who have considered streambed heat fluxes reported that these were most 

important when seeking to modeling diel variability, e.g., hourly modeling (Sinokrot and 

Stefan, 1993; Hondzo and Stefan, 1994; Kim and Chapra, 1997; Webb and Zhang, 1997; 

Evans et al., 1998), and especially for shallow streams (Jobson, 1977). 

 

3.2.1 NET SHORTWAVE RADIATION (Hs)  

The incoming solar radiation is both a function of atmospheric conditions (e.g., cloud 

cover) as well as the riparian vegetation (e.g., canopy closure at the stream level).The net 

shortwave radiation, also known as the solar radiation, is expressed as the difference 

between incoming and reflected solar radiation.  The reflectivity of the stream is defined 

as the albedo that expresses the percentage of reflected insolation to incoming insolation.  

Raphael (1962) showed that the reflectivity (albedo) is generally less than 7% for solar 

altitudes greater than 30°. And for solar altitude less than 30°, the incoming solar 

radiation is respectively low and therefore the impact on this parameter is low as well. 

Most studies showed that the reflected incoming solar radiations were in a range of 3 to 

5% (Marcotte and Duong, 1973; Morin and Couillard, 1990; Caissie et al., 2007).  Since 

no measure of the reflected incoming solar radiation was available, a constant value of 
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3% was used (Sinokrot and Stefan, 1993, Caissie et al., 2007).  Therefore, the net 

shortwave radiation was estimated as follows: 

iss HH 97.0  (3.5) 

where, His represents the incoming solar radiation at the water surface (W m-2) measured 

via a pyranometer.   

 

3.2.2 NET LONGWAVE RADIATION (Hl) 

The net longwave radiation includes the radiation emitted by the atmosphere, the water 

surface and the forest canopy.  This form of radiation can be calculated using the Stefan-

Boltzmann Law.  Most water temperature modeling studies have considered the net 

longwave radiation using both atmospheric and water surface conditions; however, only a 

few studies have included the longwave radiation emitted by the surrounding vegetation 

(e.g., Rutherford et al., 1997).  This component could become important for a stream with 

significant overhanging vegetation (Benyahya et al., 2010).  When considering the 

canopy as well as other components of the longwave radiation, the equation given by 

Singh and Singh (2001) was used her in: 

    44 273273))1((97.0  waal TTFCFCH   (3.6) 

where, σ is the Stefan-Boltzmann constant (5.67 x 10-8 W m-2 K-4), FC is the forest cover 

factor (%), Ta is the air temperature (°C) and εa is the atmospheric emissivity. In this 

equation, the forest temperature is assumed to be equal to that of air temperature with a 

forest emissivity of 0.97 (Rutherford et al., 1997; Singh and Singh, 2001; Benyahya et al., 

2010).  The forest cover factor was estimated at 65% for Catamaran Brook and at 20% for 
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the Little Southwest Miramichi (LSWM) based on field observations.  The atmospheric 

emissivity was calculated using (Morin and Couillard, 1990):  

  217.010065.074.0 Ceaa   (3.7) 

where ea is the water vapor pressure in the air (mm Hg) and C is the cloud cover factor 

(clear sky C = 0, mainly clear C = 0.25, mostly cloudy C = 0.75 and total cloud cover 1).  
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where, RH represents the relative humidity (%). 

 

3.2.3 EVAPORATIVE HEAT FLUX (He) 

The mass-transfer approach (aerodynamic) is widely used in stream temperature 

modeling for the estimation of evaporation and the evaporative heat flux (Morin and 

Couillard, 1990, Sinokrot and Stefan, 1993, Webb and Zhang, 1997, Caissie et al., 2007).  

The equation is given by:   

))(( ase eebVaH   (3.9)  

where, a and b are empirical constants, V is the wind speed at a stated elevation (m s-1) 

and es is the saturated vapor pressure of the air at the water temperature of interest (mm 

Hg).  In Equation (3.9), the evaporative flux represents an energy loss; therefore, He 

becomes negative.  The total lake evaporation per month (mm) was available at the 

nearest station (Miramichi A) and obtained from Canada’s National Climate Archive web 

site (http://www.climate.weatheroffice.gc.ca/).  Lake Evaporation is calculated using the 

observed daily values of pan evaporative water loss, the mean temperatures of the water 

in the pan and of the nearby air, and the total wind run over the pan.  The constant a and b 
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were calibrated so that the evaporation rates so computed were close to meteorological 

station observations each month for years 1979-1990 (July, August and September).  The 

Miramichi A station data should be somewhat representative of the LSWM evaporation 

with lower wind speeds; however, Catamaran Brook being more sheltered than LSWM 

should generally exhibit lower evaporation.  The mean monthly evaporation monitored at 

the Miramichi station was 128.7 mm, 111.2 mm and 76.8 mm for July, August and 

September for years 1979 to 1990.  Evaporation data were not available for the year 2007.  

At Catamaran Brook, the monthly evaporation calculated was 1.40 mm, 12.1 mm and 9.0 

mm for July, August and September of 2007.  At LSWM, the monthly evaporation was 

estimated at 24.3 mm, 37.9 mm and 26.9 mm at July, August and September of 2007.  

The differences between stream evaporation and lake evaporation can be attributed to the 

lower wind speed experienced within the stream environment.  Substituting coefficients a 

and b Equation (3.9) becomes: 

))(36( ase eeVH   (3.10) 

 

3.2.4 CONVECTIVE HEAT FLUX (Hc) 

The convective heat flux, also known as sensible heat flux, is the heat exchange that 

occurs at the air-water surface interface due to the temperature difference between air and 

water as well as wind speed.  The Bowen ratio approach was used, which is given by 

(Bowen, 1926): 
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where, Kp is a proportionality constant that is usually close to 0.61), and P is the 

atmospheric pressure (mm Hg).  Substituting Equation (3.10) into (3.11), the convective 

heat flux becomes: 

   wac TT
P

VH 
1000

83.166.3        (3.12) 

 

3.2.5 PRECIPITATION HEAT FLUX (Hp) 

In most studies dealing with water temperature modeling, the energy from precipitation 

was assumed to be very small and was therefore neglected (Webb and Zhang, 1997; 

Evans et al., 1998; Hannah et al., 2008). In this study, precipitation heat fluxes were 

considered part of the energy heat budget to examine such fluxes in the short-term (e.g., 

hourly basis), especially during important rain events.  Precipitation heat fluxes are a 

function of the difference in temperature between rainfall and stream water.  Assuming 

the rainfall temperature to be similar to the air temperature, the precipitation heat flux was 

calculated from the equation provided by Marcotte and Duong (1973): 

)(16.1 wppp TTyH          (3.13) 

where, yp is the precipitation in mm, Tw the stream water temperature (°C) and Tp is the 

rain temperature (°C) (assumed equal to the air temperature). 

 

3.2.6 STREAMBED HEAT FLUXES (Hbed) 

The heat exchange at the water-riverbed interface has been neglected in most studies 

using a heat budget model to predict water temperatures (Caissie, 2004; Sridhar et al., 

2004).  However, others have found this contribution to be important, especially for short 

time scales (hourly) and shallow streams (Brown, 1969; Jobson, 1977; Sinokrot and 
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Stefan, 1993; Kim and Chapra 1997; Webb and Zhang, 1997; Jobson, 1977).  A water 

temperature advective-diffusion model (finite difference model) was calibrated for both 

Catamaran Brook (Cat Bk) and Little Southwest Miramichi River (LSWM) to estimate 

the riverbed temperature profile (T(z,t)).  This model was used to predict intragravel 

temperatures at different depths within the stream substrate using a one dimensional 

advective-diffusion equation (Caissie and Satish, 2001): 
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where, Tz is the streambed temperature at depth z (°C),  km is the thermal conductivity of 

the solid-fluid matrix (W m-1 °C-1), vg is the vertical velocity component (negative for 

upwelling water) (m hr-1), cw is the heat capacity of the fluid   (e.g. water at 4187 J kg-1 

°C-1), ρ is the density of the fluid (e.g. water at 1000 kg m-3), cm and ρm are the heat 

capacity (J kg-1 °C-1) and density (kg m-3) of the rock-fluid matrix , and z is the depth 

within the substrate (m).   

To run the advective-diffusion model, data at both the upper and lower boundaries are 

required (i.e., at the streambed-water interface and at a specific depth within the 

substrate).  Measured stream water temperatures were used for the upper boundary for 

both sites whereas measured intragravel temperatures at 3 m were used for the lower 

boundary based on data from the Cat Bk site.  The advective-diffusion model was run and 

temperatures were estimated at every 0.1 m (for depths 0 m to 1m) and every 0.2 m (for 

depths 1 m to 3 m).  The vertical water velocity component (vg) was assumed at 0.0020 m 

hr-1 for Cat Bk and 0.0025 m hr-1 for LSWM based on previous calibrations and field 

observations (D. Caissie, unpublished data).  Also based on water temperature 
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observations within a groundwater well at Catamaran Brook, a constant groundwater 

temperature of 6.5 °C was assumed at a depth of 6 m into the substrate for Cat Bk and 

LSWM (Caissie and Satish, 2001). 

 

The heat capacity of the saturated porous media in question (c) was estimated using the 

following equation (Caissie and Satish, 2001): 

  sswwmm cncnc   1         (3.15) 

where, ρm is the density of  the rock-fluid matrix, ρw and cw are the density of the water 

and the specific heat capacity of the water (1000 kg m-3 and 4187 J kg-1 °C-1), and ρs and 

cs are the density and specific heat capacity of the streambed. The porosity (n) and the 

density of the rock-fluid matrix (ρm) were estimated from field observations at the Cat Bk 

and at LSWM (n = 0.27 and ρm = 2300 kg m-3).  The streambed consisted mainly of 

granite type rocks with a density (ρs) of 2578 kg m-3 and a specific heat capacity (cs) of 

775 J kg-1 °C-1.  Therefore, the specific heat of the solid-fluid matrix (cm) was estimated at          

1130 J kg-1 °C-1.  The thermal conductivity of the saturated sediment km was calculated as 

a function of porosity n (0.27) and thermal conductivity of water kw (0.590 W m-1 °C-1) 

and solids ks (2.79 W m-1 °C-1) with the following equation (Stallman, 1965): 

  sw knnkk  1          (3.16) 

With the above physical properties and porosity, the thermal conductivity of the saturated 

sediment (km) was calculated at 2.2 W m-1 °C-1 for Cat Bk and LSWM. 
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3.2.6.1 STREAMBED HEAT FLUX BY CONDUCTION (Hb) 

With the above streambed physical properties the heat flux by conduction was estimated 

using the heat budget method (Hondzo and Stefan, 1994).  This approach estimated the 

rate of variation in riverbed heat storage knowing the temperature   over a range of depths 

and at regular intervals, and by comparing changes in heat storage over time.  The 

streambed heat flux by conduction was calculated using the following equation (Hondzo 

and Stefan, 1994): 
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where, T(z,t) is the riverbed temperature profile with depth z at a time step (t) of one hour 

and other parameters are as described before.  The heat transfer was calculated from this 

equation as temperature changed though time.  Energy was transferred from the lotic 

environment to the streambed and vice versa. 

 

3.2.6.2 STREAMBED HEAT FLUX BY GROUNDWATER ADVECTION (Hg) 

The advective heat flux is both a function of the groundwater contribution (vertical 

velocity component) and the difference between surface water and groundwater 

temperatures.  The advective heat flux was estimated using the formula provided by 

Sridhar et al. (2004): 

 gwgwwg TTQcH           (3.18) 

where, Qg is the groundwater flow (m3 s-1) and Tg is the groundwater temperature at a 

certain depth close to the surface (e.g. at 0.1 m).  Given the vertical flow component, the 

groundwater flow (Qg) was then estimated for an area of 1 m2.  The vertical flow velocity 

(vg) was negative (for upwelling flow) in the original advection-diffusion heat transport 
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Equation (3.14); however, upwelling flow becomes a positive discharge in Equation 

(3.18).  To estimate the advective heat flux using (3.18), the groundwater temperature 

(Tg) at 0.1 m was used from the previously calculated temperature profile of an advective-

diffusion model. 

 

In most water temperature studies, meteorological data are usually taken from the nearest 

meteorological station (e.g., nearest airport), which can be many kilometres away from 

the stream environment.  Also, significant differences can exist between the 

meteorological data and the stream microclimate (Benyahya et al., 2010).  For the 

deterministic model, data were collected both within the stream environment 

(microclimate sites) and at a meteorological station (within a cleared area of the forest), 

for comparison purposes.    

 

3.3 EQUILIBRIUM TEMPERATURE MODEL 

Most relevant energy components related to water temperature modeling have been 

described in previous deterministic studies (Raphael, 1962; Younus et al., 2000; Caissie 

et al., 2007) as well as in Section 3.2.   

   

Equilibrium temperature models have been proven to be efficient in studies of river water 

temperatures at daily or weekly time scales (Gu et al., 1998; Mohseni and Stefan, 1999; 

Bogan et al., 2003; Larnier et al., 2010; Herb and Stefan, 2011).  The intention in this 

study was to develop such a model and assess its performance at an hourly time scales.  

The equilibrium temperature model was developed to simplify the expression of the total 

heat flux (Edinger et all, 1968; Morin and Couillard, 1990; Gu et al., 1998; Caissie et al., 
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2005).  The net flux at the water surface is expressed by a simpler equation with fewer 

meteorological parameters.  The exchange of heat flux between the atmosphere and the 

river is assumed to be proportional to the difference between the water temperature and 

an equilibrium temperature.  The development of this model is provided in Caissie et al. 

(2005).  The equilibrium temperature is the water temperature at which the total heat flux 

at the surface of the river is zero.  It is the water temperature that the river is trying to 

reach under natural steady-state conditions, but can never reach due to changing 

meteorological conditions. The total heat flux is expressed as a function of water and 

equilibrium temperatures (Lebosquet, 1946; Edinger et al., 1968, Novotny and Krenkel, 

1973).  Under such conditions, the total heat flux can be expressed as Newton’s Law of 

Cooling given by the following equation (Morin and Couillard, 1990): 

 wet TTKH   (3.19) 

where, Tw represents the water temperature, Te is the equilibrium temperature (°C) and K 

represents a thermal exchange coefficient (W m-2 °C-1).   After substitution of Equation 

(3.19) into Equation (3.3b), the changes in water temperature can be expressed by: 
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where, W is the river width (m), A is the area of the cross-section (m2), W/A is 

approximated by 1/yw, where yw is the mean water depth (m).  Studies have shown a good 

relationship between air and equilibrium temperature (Mohseni and Stefan, 1999), while 
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others have shown that Te can be expressed as a linear function of air temperature (Caissie 

et al., 2005; Larnier et al., 2010): 

  ae TT   (3.22) 

where, α and β are the linear regression coefficient between hourly air and equilibrium 

temperature.  Therefore, Equation (3.21) can be rewritten as follows: 
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Some studies have used the equilibrium temperature concept to study the thermal regime 

in rivers (LeBosquet 1946; Edinger et all, 1968; Novotny and Krenkel 1973) but few have 

actually modeled water temperatures using this approach (Caissie et al., 2005; Larnier et 

al., 2010). 

 

The equilibrium model developed for the present study was applied at hourly time steps 

and for open water conditions, i.e., from April 15 to October 31 for years 1998 to 2007.  

These years were divided into two groups: Calibration (1998-2002) and validation (2003-

2007).  The calibration years were used to define the linear relationship between air and 

equilibrium temperatures, as well as the thermal exchange coefficient (K), using the 

minimum sum of squared errors (observed vs. predicted).  The validation years (2003-

2007) were used to test the model, using the parameters previously defined during the 

calibration period.  In order to keep the model simple, the thermal exchange coefficient 

(K) was considered as a constant for each river as it was the case in previous studies 

(Caissie et al., 2005; Larnier et al., 2011).   
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3.4 ARTIFICIAL NEURAL NETWORK MODEL 

The third model selected to predict the variability of stream water temperatures was an 

artificial neural network (ANN).  ANNs are widely used in hydrology and the applied 

earth sciences, particularly in modeling of precipitation and run-off, water demand 

predictions, groundwater and water quality (Govindaraju, 2000a).  Few studies have 

applied this technique to water temperatures (Bélanger et al., 2003; Sivri et al., 2007; 

Chenard and Caissie, 2008), and even fewer studies have been carried out using water 

temperatures (Risley et al., 2003). The study of Risley et al. (2003) used such data as 

meteorological data, riparian habitat characteristics, and watershed physiography.  These 

data are usually not readily available for most streams.  The goal of this study was to 

develop an ANN model using minimal and readily accessible input data.  The model of 

Risley et al. (2003) was applied on one short season (June 21 to September 20) and for 

one only year; whereas, this study applied ANN models to a longer open water season 

(April 15 to October 31) for 10 consecutive years.  This model consisted of a finite 

number of layers, as presented in Figure 3.2.  Each layer is composed of a number of 

neurons.   
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Figure 3.2.  Illustration of feed-forward neural network architecture. 
 
 
First, each input xi sends its value to all hidden nodes j of the network.  Each hidden node 

calculates the weighted sum of inputs and the bias, using: 





I

i
iijjj xiwbn

1

         (3.24) 

where, i is the total number of input nodes, j is the hidden node, iwij are the connection 

weights between the ith input and jth hidden node, bj is the bias weight of each hidden 

node and xi is the input node.  Each hidden node j computes a function of its sum through 

an activation function: 

 jj nfa            (3.25) 

The activation functions can be sigmoidal, linear, threshold-type, Gaussian or hyperbolic 

tangent, depending on the type of network and training algorithm employed (Dawson and 
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Wilby, 2001).  The most commonly used activation function found in hydrology is the 

hyperbolic tangent functions (Govindaraju, 2000a; Shamseldin et al., 2002; Shrestha et 

al., 2005; Yonaba et al., 2010).  The hyperbolic tangent function selected in this study, is 

given by:  

     1
1

2
2




  jnj
e

nf         (3.26) 

where, nj is the weighted sum of inputs and bias of the hidden node j.  This function was 

selected because it clearly represents the non-linear processes usually found in hydrology, 

it is an always-increasing function that is continuous and smooth with asymptotic 

properties, and it has output values between -1 and +1 (Smith, 1993; Jain and Mao, 1996).   

 

In the next step, each hidden node (j) sends its result aj to all the output nodes (yk).   Each 

output node value is calculated using: 
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1

        (3.27) 

where, k is the output node, bojk is the bias weight of the output node, lwjk is the connection 

weight for the jth hidden node and the kth output node, and yk is the output node.   

 

For the application of ANN within the present study, a supervised learning paradigm was 

used, meaning that the ANN uses pairs of data so as to have a correct answer (output) for 

every input.  The feed-forward backpropagation algorithm was also used. It distributed 

the error (predicted output – observed output) so as to obtain the lowest or minimal total 

errors.  With this algorithm, the information goes through the network and the network 

predicts an output.  The predicted output is then compared to the observed output (e.g., 
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measured water temperature data) and the error  is calculated.  The error is transmitted in 

the reverse direction and the weights are readjusted.  This iterative process is done many 

times until the error is less than some desired threshold.  The learning process adjusts the 

weights to minimize the error.   

 

Water temperature data for the ANN was used for the period April 15 (day 105) to October 

31 (day 304) and for years 1998 and 2007 at both Cat Bk and LSWM.  This period 

approximately corresponded to the period without ice cover, i.e., open water conditions.  

Some years had no data for a few days; these days were not included in the ANN model.  

Data were separated into two samples: training data (1998-2002) and validation data (2003-

2007).   

 

Two feed-forward backpropagation ANN models were created using Matlab Student 7.1.,   

to predict water temperatures.  The first ANN was developed to predict daily mean water 

temperatures.  The four input parameters of the first ANN were: air temperature (°C) of the 

present and previous day, time of year (day) and mean daily water level (m).   For the ANN 

predicting daily mean water temperature, the air temperature of the previous day was used 

as input because air and water temperature are strongly correlated at such scales 

(Kothandaraman, 1971; Cluis, 1972).  The simulated daily mean water temperatures from 

the first ANN were then used as input to the hourly ANN water temperature model.  The 

second ANN was developed to predict hourly water temperature and used six input nodes: 

air temperature (°C) of the present and previous hour, time of day (hour), time of year 

(day), daily mean water temperature (simulated from the previous ANN model) (°C), and 

mean daily water level (m).   The selection of air temperature, as input data, was based on 
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the availability of such data and its strong correlation to water temperatures (Cluis, 1972; 

Song and Chien, 1977; Stefan and Preud’Homme, 1993; Mohseni and Stefan, 1999; 

Bélanger et al., 2005; Chenard and Caissie, 2008).  During the training of the second ANN, 

the observed daily mean water temperatures were used; however during the validation the 

simulated daily mean water temperatures were used to simulate the hourly temperatures.   

 

The complexity of a function estimated by a neural network increases with the training.  

During the training, the network will reach a certain number of epochs that will give the 

best generalization and after this critical point; the ANN model will start overfitting (Maier 

and Dandy. 2000).  The performance is measured during the training and validation phase 

with a different number of hidden nodes.  When the performance during the validation 

phase starts to decrease for a certain number of hidden nodes, the network should stop the 

training and use the corresponding hidden nodes.  This limiting node procedure for the 

number of hidden nodes can also be applied to the number of epochs.  Smith (1993) 

suggested limiting the number of hidden nodes within a network and then limiting the 

training (based on validation sample error) to prevent overfitting. The two ANN models 

obtained optimal results with five hidden nodes in one hidden layer.  The ANN models 

were adjusted until the difference between predicted and observed water temperatures was 

minimized.   

 

The ANN model predicting the daily mean water temperatures had four input nodes (I = 4), 

five hidden nodes (J = 5) in one hidden layer and only one output node (K = 1).  The ANN 

model predicting the hourly water temperatures had six input nodes (I = 6), five hidden 

nodes (J = 5) in one hidden layer, and only one output node (K = 1).   
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3.5 DATA COLLECTION 

Hourly data were collected at both microclimate sites (i.e., Catamaran Brook and Little 

Southwest Miramichi River) and at the remote meteorological station (MetSta) from July 

4, 2007 (day 185) to October 2 (day 275) for the analysis of the river heat budget 

(deterministic model).  Streambed temperatures and microclimate data were monitored 

only during the summer of 2007.  Data for the equilibrium temperature and ANN models 

came from the meteorological station (MetSta) only.  Water temperature and 

meteorological data for the equilibrium temperature and ANN models were collected for 

the period of April 15 (day 105) to October 31 (day 304) and for years 1998 to 2007 at 

both Cat BK and LSWM.  This period approximately corresponded to the period of the 

year without ice cover, i.e., open water condition.  Some years had missing data for a few 

days and these days were not included in the water temperature models.  Data were 

separated into two samples: training data (1998-2002) and validation data (2003-2007).   

Meteorological stations were installed within the stream environment in Catamaran Brook 

and Little Southwest Miramichi River to monitor microclimate conditions (air 

temperature, relative humidity, wind speed, solar radiation and water temperature) for the 

deterministic models. Air temperature, relative humidity, and wind speed were measured 

2 m above the water surface using a Vaisala Relative Humidity and Temperature sensor 

and a RM Young wind monitoring sensor. Water temperature was measured with a 107B 

Water Temperature Probe (Campbell Scientific Corps.) and direct solar radiation was 

measured by using a Kipp and Zonen Silicon Pyranometer (at LSWM) and a LI-COR 

silicon pyranometer (Catamaran Brook). All sensors were scanned every 5 seconds by a 

CR10 data logger and hourly averages were then calculated.   
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Precipitation and barometric pressure were obtained from the Catamaran Brook 

meteorological station, which is located between 1 km (Cat Bk) and 8 km (LSWM) from 

the stream microclimate sites.  This station is located in the middle of a 400 m x 400 m 

clear-cut area.  A tipping bucket rain gauge (TE525) by Texas Electronics Inc. was used 

to monitor precipitation at approximately 1.2 m above the ground and sheltered by an 

Alter type wind shield.  Barometric pressure was monitored using a setra barometric 

pressure sensor (Model SBP270) at approximately 2 m above grade.  Daily mean 

discharges were obtained from two Environment Canada’s hydrometric stations 

(01BP001 and 01BP002). Mean water depth was obtained from discharge and a power 

function relating mean water depth and river discharge as described in Caissie et al. 

(2007).  Hourly cloud cover information came from a local weather station (Miramichi 

station 8 100 989).  Streambed temperature sensors were installed in Catamaran Brook 

during the summer of 2007.  The sensors were placed in a single vertical over a range of 

different depths and up to 3 m within the substrate, to monitor streambed temperatures.  

The type of water temperature sensor used was the model 107B from Campbell Scientific 

Canada Corp.  They were connected to a CR10 data logger where data were stored.   

 

3.6 MODELING PERFORMANCE CRITERIA 

To compare modeling performances for different years and study periods 

(calibration/validation) three criteria were used:  The root-mean-square error (RMSE), the 

coefficient of determination (R2), and the bias.  These criteria were selected because they 

are often used in modeling studies and results using these performance criteria were 

available for other water temperature models at Cat Bk and LSWM.  The root-mean-
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square error (RMSE) represents the mean errors associated with the modeling effort.  It 

was calculated using: 
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 (3.28) 

where, N is the number of hourly water temperature observations, Tw(O) is the observed 

hourly water temperature and Tw(P) is the predicted hourly water temperature. 

 

The coefficient of determination (R2) represents the variability in the data that can be 

explained by the model, found using: 

 
         

        


























 

























  

 

 


 

N

i

N

i iwiw

N

i

N

i
iwi

N

i

N

i iw

N

i iwiwiw

PTPTNOTOTN

PTOTPTOTN
R

1

2

1

2
2

1
1

2

1 112  (3.29) 

The overall over or under-estimation exhibited by a given temperature model was of 

interest.  There are various ways to quantify such ‘bias’.  The measure used in this study 

was as follows: 
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For the deterministic model, these criteria (RMSE, R2 and Bias) were also calculated for 

total heat flux, where Tw(P) and Tw(O) are respectively replaced by Ht(P) and Ht(O) in the 

equations above.
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CHAPTER 4: RESULTS 

 

4.1 DETERMINISTIC MODEL 

4.1.1 OVERVIEW OF DATA SERIES 

Hourly data were collected from July 4, 2007 (day 185) to October 2 (day 275) at both 

microclimate monitoring sites (Catamaran Brook and at Little Southwest Miramichi 

River), for the analysis of the river heat budget.  Six different periods in summer 2007 

were selected and each period was selected based on specific water temperature patterns 

and meteorological characteristics (Figure 4.1).  For instance, Period 1 represents a period 

with the highest air and water temperature during the summer, whereas Period 3 

represents low flow conditions (Table 4.1).  Period 6 represents autumn conditions and 

Period 4 was mostly cloudy with a significant amount of precipitation. 

 

Table 4.1.  Selected periods for the river heat budget analysis at both Catamaran Brook 
and Little Southwest Miramichi River in 2007. 
 

Period Days of year Dates Hydrometeorological conditions 
    

1 207-211 July 26-30 Highest water temperatures, high stream flow
2 222-226 August 10-14 Generally clear sky days 
3 231-235 August 19-23 Relatively low flow 
4 241-245 August 29 - Sept. 2 High precipitation, cloudy days 
5 247-251 September 4-8 Great variability in air and water temperatures
6 268-272 September 25-29 Autumn conditions 

 

 

Figures 4.1a and 4.1b show the hourly air and water temperature time series for the entire 

study period.  Precipitation (hourly) and discharge (mean daily) for both Catamaran 

Brook (Cat Bk) and Little Southwest Miramichi (LSWM) are presented in Figure 4.1c.  
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Air temperatures were very similar within the microclimate environment of both streams 

(Figure 4.1a).  The mean air temperature at Cat Bk for the study period was 14.5 °C (–1.3 

°C to 31.3 °C).  The mean air temperature at LSWM was slightly higher at 15.9 °C (–1.8 

°C to 31.4 °C).  Although microclimate air temperatures showed similar patterns, water 

temperatures showed more pronounced difference between the two river systems (Figure 

4.1b).  The maximum water temperature at Cat Bk occurred on day 206 (July 25) at 22.6 

°C with a mean value of 14.4 °C.  Water temperatures were higher in LSWM, with a 

mean temperature of 18.8°C, reaching a maximum of 28.7 °C (day 209; July 28).  

Discharge was much higher in LSWM (average daily flow of 14.9 m3 s-1) than in the Cat 

Bk (average daily flow of 0.31 m3 s-1) due to the differences in size of these catchments.  

Hourly precipitation was measured at the Cat Bk meteorological station (Figure 3.1).  The 

maximum hourly precipitation was recorded on August 8 (11.9 mm; day 220) whereas the 

maximum daily precipitation, as shown in Figure 4.c, was recorded on July 5 (day 186; 

24.9 mm). 
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Figure 4.1.  Time series plot of selected parameters (air temperature, water temperature, 
stream flow and precipitation) and study periods for Catamaran Brook and Little 
Southwest Miramichi River.  The stepped data on Figure 4.1c represents daily mean 
discharge.  Shaded bars represent Period 1 to Period 6. 
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The present study included an examination of the differences between data from a remote 

meteorological station (MetSta) and those measured within the near-stream environment 

(microclimate sites).  Table 4.2 shows average conditions for each period (Period 1 to 6) 

for the different microclimate sites as well as those at the meteorological station.  The 

Duncan’s multiple range (DMR) test was used to detect statistically significant 

differences between sites, for each period (SAS 9.1.3).  This test evaluates the statistical 

significance of differences in ranges in sorted samples for pairs of means, using a 

studentized range statistic.  No air temperature ranges were found to be significantly 

different (all sites, during periods 3, 4, and 5; p ˃ 0.11) and no differences were noted 

between LSWM and the MetSta (all periods).  Air temperature at Cat Bk was 

significantly different than LSWM and MetSta during periods 1 and 2.  Mean air 

temperature at Cat Bk was lower, although less than 2 °C.  Relative humidity was 

significantly different (p < 0.001) between sites and for all periods.  Most of the 

difference was attributable to MetSta.  The relative humidity at LSWM and Cat Bk was 

higher than the remote meteorological station (MetSta).  As expected, a significant 

difference (p < 0.001) was observed between sites for wind speed for all periods.  For 

example, wind sheltering was strong at the river microclimate sites, with an average wind 

speed of only 0.06-0.15 m s-1 at Cat Bk and 0.47-0.72 m s-1 at LSWM.  The remote 

MetSta data showed higher wind speeds (1.5-2.3 m s-1).  Incoming solar radiation 

measured was not significantly different (p > 0.05) and averaged between 95.5 W m-2 and 

250 W m-2.  However, incoming solar radiation was significantly lower (p < 0.05) at Cat 

Bk, with averages between 28.3 W m-2 and 100 W m-2.  Although the air temperatures 

were similar between Cat Bk and LSWM, the water temperature was significantly 

warmer (p < 0.001) at LSWM, 3.5 °C on average.  Water temperature varied between 
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12.2 °C and 19.1 °C at Cat Bk and between 14.8 °C and 23.9 °C at LSWM (Period 

1Period 1 to 6).  Table 4.2 also shows average discharge (for all periods) at Cat Bk and 

LSWM.  As expected, the mean discharge of Cat Bk was significantly different than that 

of LSWM (p < 0.001).  

 

Table 4.2.  Comparison of period averages of specific meteorological parameter at two 
microclimate sites (Catamaran Brook and Little Southwest Miramichi River) and at the 
meteorological station (MetSta). 
 

 

 

4.1.2 DETAILED ANALYSIS OF HEAT FLUXES AND WATER TEMPERATURES  

A detailed heat flux analysis was carried out for both Cat Bk and LSWM for Period 1 to 

Period 6 using microclimate data to compare observed and predicted fluxes (Table 4.3).  

Period 1 consisted of days 207 to 211 (July 26-30, 2007) and included the warmest air 

Meteorological or hydrologic parameter Site Period 

  1 2 3 4 5 6 

Air Temperature (°C) Cat Bka 21.3 16.0 11.5 14.4 13.4 12.3 

 LSWMb 22.7 17.5 12.9 15.6 14.6 13.3 

 MetStac 22.8 17.6 12.5 15.4 15.3 13.8 

Relative Humidity (%) Cat  Bk 87.1 80.9 78.9 90.5 84.6 93.2 
 LSWM 83.2 77.7 75.9 86.4 80.9 90.2 

 MetSta 77.5 69.5 71.2 82.0 70.8 83.4 

Wind Speed (m s-1) Cat Bk 0.09 0.07 0.13 0.06 0.15 0.10 
 LSWM 0.61 0.47 0.72 0.49 0.67 0.35 
 MetSta 1.7 1.5 1.9 1.5 2.3 1.5 

Incoming Solar Radiation (W m-2) Cat Bk 100 84.2 86.3 44.3 46.7 28.3 
 LSWM 224 239 236 158 175 95.5 
 MetSta 229 250 236 155 182 99.4 

Water Temperature (°C) Cat Bk 19.1 16.2 12.9 15.0 13.2 12.2 
 LSWM 23.9 20.3 16.6 18.4 16.4 14.8 

Streamflow (m3 s-1) Cat Bk 0.516 0.180 0.098 0.246 0.092 0.125
 LSWM 21.1 14.3 8.90 13.7 9.10 7.70 
a - Catamaran Brook 

b - Little Southwest Miramichi 

c - Meteorological Station 
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and water temperatures as well as a high discharge event towards the end of the period 

(Figure 4.1c).  The high discharge event was due to 40 mm of rain over a 24-hour period 

(day 209 and 210).  Period 2 consisted of days 222 to 226 (August 10 to 14, 2007), which 

were days with generally clear skies and no precipitation.  Period 3 was a period with 

relatively low flows and included days 231 to 235 (August 19 to 23, 2007).  High 

precipitation and cloudy days were the main characteristics of Period 4, days 241 to 145 

(August 29 to September 2, 2007).  Period 5 was selected to examine the heat fluxes 

during high variability in air and water temperatures from days 247 to 251 (September 4 

to 8, 2007).  Period 6 was selected for the detailed heat flux analysis representing autumn 

conditions (e.g. lower water temperatures and heat fluxes), and included days 268 to 272 

(September 25 to 29).    Important precipitation during Period 6 (total rainfall of 25 mm 

over 3 days; day 269 to 271) caused an increase in daily stream discharges in both 

streams (Figure 4.1c). 

 

Heat fluxes related to precipitation were not illustrated on any of the Figures because it 

was too small (compared to other heat fluxes); however values are provided in Table 4.3.  

Precipitation fluxes contributed less than 0.2 W m-2 at Cat Bk and 0.7 W m-2 at LSWM 

for periods 1, 4 and 6 (Table 4.3). 

 

The total heat flux was calculated using two approaches.  The first consisted of 

calculating the observed total heat flux or Ht(O) whereas the second approach consisted 

of calculating the predicted total heat flux or Ht(P).  The observed total heat flux was 

calculated based on observed water temperature variability and using Equation (3.3b), 

based on actual changes in water temperature every hour, (∆T).  The second approach 
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consisted of calculating each heat flux component (each flux of Equation (3.4)) and 

adding the components to get the net predicted heat flux.  Both of these net heat fluxes 

were calculated and compared to Ht(O) and Ht(P).   

 

Results of the performance of the deterministic model applied to Cat Bk and to LSWM 

are shown in Table 4.4.  It shows the root-mean-square-error (RMSE), the coefficient of 

determination (R2) and the bias (Bias) calculated using the predicted total heat flux 

(Ht(P)) and observed total heat flux  (Ht(O)), for the deterministic model. 
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Table 4.3.  Heat fluxes (gain, loss and net) for both river systems. 

  Catamaran Brook 

  Ht(O) Ht(P) Hsurf Hs Hl He Hc Hp Hbed Hb Hg 

Period 1 Gain 23.8 42.9 41.4 30.0 5.3 2.9 3.0 0.2 1.5 1.5 0.0 

 Loss -27.9 -8.6 -3.7 0.0 -1.6 -1.9 -0.2 -0.1 -4.9 -2.9 -1.9 

 Net -4.1 34.3 37.7 30.0 3.7 1.1 2.8 0.1 -3.4 -1.5 -1.9 
             

Period 2 Gain 19.8 20.9 18.4 16.3 0.9 0.0 1.2 0.0 2.4 2.4 0.0 

 Loss -19.7 -22.9 -16.9 0.0 -8.0 -7.6 -1.3 0.0 -6.0 -4.1 -1.9 

 Net 0.2 -2.0 1.6 16.3 -7.1 -7.6 0.0 0.0 -3.6 -1.7 -1.9 
             

Period 3 Gain 15.7 21.2 17.0 15.5 0.5 0.0 1.0 0.0 4.2 3.9 0.3 

 Loss -16.8 -26.1 -21.4 0.0 -9.6 -9.6 -2.2 0.0 -4.7 -3.7 -1.1 

 Net -1.1 -4.9 -4.4 15.5 -9.1 -9.6 -1.2 0.0 -0.5 0.2 -0.7 

             

Period 4 Gain 12.9 12.3 9.9 8.1 0.7 0.3 0.7 0.1 2.5 2.4 0.1 

 Loss -16.4 -16.8 -13.5 0.0 -7.5 -4.7 -1.2 -0.1 -3.3 -2.0 -1.3 

 Net -3.5 -4.4 -3.6 8.1 -6.8 -4.4 -0.5 0.0 -0.8 0.4 -1.2 

             

Period 5 Gain 13.1 17.0 14.1 8.1 2.2 2.4 1.4 0.0 2.9 2.6 0.3 

 Loss -11.5 -18.4 -13.4 0.0 -6.4 -5.8 -1.2 0.0 -5.0 -3.8 -1.2 

 Net 1.7 -1.4 0.7 8.1 -4.2 -3.4 0.2 0.0 -2.1 -1.2 -0.9 

             

Period 6 Gain 8.2 11.3 9.5 5.8 1.2 1.6 0.9 0.1 1.8 1.7 0.1 

 Loss -8.9 -13.0 -10.1 0.0 -6.2 -3.0 -0.8 0.0 -2.9 -2.1 -0.8 

 Net -0.7 -1.7 -0.6 5.8 -5.0 -1.5 0.0 0.1 -1.1 -0.4 -0.7 

  Little Southwest Miramichi River 

  Ht(O) Ht(P) Hsurf Hs Hl He Hc Hp Hbed Hb Hg 

Period 1 Gain 98.2 130.8 126.8 120.9 2.9 0.0 3.0 0.0 3.9 3.9 0.0 

 Loss -115.6 -59.0 -48.4 0.0 -22.7 -21.9 -3.2 -0.7 -10.5 -6.4 -4.2 

 Net -17.4 71.8 78.4 120.9 -19.8 -21.9 -0.2 -0.7 -6.6 -2.4 -4.2 

             

Period 2 Gain 106.9 116.0 110.9 109.1 0.0 0.0 1.8 0.0 5.1 5.1 0.1 

 Loss -101.4 -87.8 -76.3 0.0 -45.4 -25.7 -5.2 0.0 -11.5 -8.0 -3.6 

 Net 5.5 28.2 34.6 109.1 -45.4 -25.7 -3.4 0.0 -6.4 -2.9 -3.5 

             

Period 3 Gain 93.5 105.5 96.9 96.3 0.0 0.0 0.7 0.0 8.5 8.0 0.5 

 Loss -90.7 -89.8 -79.7 0.0 -49.2 -24.2 -6.3 0.0 -10.0 -7.6 -2.4 

 Net 2.8 15.7 17.2 96.3 -49.2 -24.2 -5.7 0.0 -1.5 0.4 -1.9 

             

Period 4 Gain 66.5 76.5 70.8 70.0 0.02 0.00 0.7 0.1 5.7 5.6 0.2 

 Loss -79.0 -69.6 -63.3 0.0 -39.0 -18.8 -5.2 -0.3 -6.3 -4.1 -2.2 

 Net -12.5 6.9 7.5 70.0 -39.0 -18.8 -4.5 -0.2 -0.6 1.5 -2.0 

             

Period 5 Gain 82.4 93.3 87.0 82.1 1.9 0.4 2.5 0.0 6.4 5.8 0.5 

 Loss -72.4 -63.5 -53.5 0.0 -33.3 -15.6 -4.6 0.0 -10.0 -7.5 -2.5 

 Net 10.0 29.8 33.5 82.1 -31.4 -15.2 -2.1 0.0 -3.7 -1.7 -2.0 

             

Period 6 Gain 47.2 53.9 49.0 43.7 2.1 1.6 1.5 0.1 4.9 4.6 0.3 

 Loss -50.6 -57.4 -51.4 0.0 -36.3 -10.8 -4.0 -0.2 -6.0 -4.3 -1.6 

 Net -3.5 -3.4 -2.3 43.7 -34.2 -9.3 -2.5 -0.1 -1.1 0.3 -1.4 
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Table 4.4. Results of modeling performance between predicted total heat flux, Ht(P), and 
observed total heat flux, Ht(O), for the deterministic model at Catamaran Brook and Little 
Southwest Miramichi River. 
 
 

 

 

 

 

 

4.1.2.1 PERIOD 1 

Catamaran Brook 

 Air temperatures at Cat Bk during Period 1 (Figure 4.2a) were high initially (day 207 to 

209; peaked at 31.3°C), and decreased thereafter (days 210-211; peaking at 23.2°C).  

Water temperatures in Cat Bk varied accordingly, between 17.1°C and 22.6°C.  Fluxes 

showed values ranging between -174 W m-2 and 227 W m-2.  The predicted net heat flux 

was overestimated during the daytime (day 207 and 208) but good agreement was 

observed at night on those same days (Figure 4.2a).  A significant departure was observed 

between the two time series, Ht(P) and Ht(O) on day 210, coincidently with a rainfall 

event and high discharge.  Period 1 had the poorest performance of all periods at Cat Bk, 

with a RMSE of 61.3 W m-2, a R2 of 0.721 and a bias of 38.4 W m-2 (Table 4.4). 

 

When looking at the composition of the total heat flux (Ht(P)), it was noticed that the 

surface heat flux dominated the gains (positive fluxes) during the day and the losses at 

night (negative fluxes) whereas the streambed heat flux dominated the losses during the 

 Catamaran Brook Little Southwest Miramichi 

Period   RMSE ( W m-2) R2 Bias ( W m-2) RMSE ( W m-2) R2 Bias ( W m-2)

        
Period 1  61.3 0.721 38.4 130.8 0.922 89.2 
Period 2  34.1 0.792 -2.2 85.4 0.943 22.2 
Period 3  30.3 0.875 -4.8 72.6 0.947 12.9 
Period 4  23.2 0.819 -1.1 64.2 0.947 19.5 
Period 5  24.8 0.836 -1.6 82.6 0.915 19.9 
Period 6  17.7 0.806 -1.0 55.8 0.910 0.1 



84 
 

day with small gains at night (Figure 4.2b).  Surface heat fluxes exhibited their highest 

values early in Period 1 in both gains and losses (gains of 200-276 W m-2 and losses of -

50.0 W m-2; days 207-209) followed by lower values thereafter.  Streambed fluxes were 

predominately negative throughout the period with values reaching -50.4 W m-2 during 

the first 3 days.  A slight gain of 17.5 W m-2 was observed on day 210.  

 

Both the surface and streambed heat fluxes were further analysed by calculating the 

relative contribution of each component (Figure 4.2c and 4.2d).  For example, the net 

shortwave radiation (Hs) was the major contributor to the surface heat gain during the 

day, reaching 250 W/m2 (Figure 4.2c).  During the day, the evaporative heat flux (He) was 

the main component of surface energy loss.  At night, the evaporative heat flux became 

slightly positive, but less than 19.1 W m-2.   
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Figure 4.2.  Detailed analysis of heat fluxes at Catamaran Brook and Little Southwest 
Miramichi River for Period 1. 
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The sensible heat flux (Hc) was lower than most other components, varying between –4.0 

W m-2 at night and 14.2 W m-2 during the day.  The net longwave radiation was a major 

cause of heat gain during the day (after solar radiation) and a major source of heat loss at 

night.  The net longwave radiation generally between -27.7 W m-2 at night and   38.4 W 

m-2 during the day.  Hourly precipitation heat fluxes (Hp) on day 209 and 210 varied 

between -5.0 W m-2 and 8.7 W m-2 for a precipitation event of 40 mm. 

 

Heat flux by conduction was the dominant flux among the streambed fluxes (Figure 

4.2d). Streambed conduction provided heat at night, (up to 18.0 W m-2, and was the 

principal contributor of heat loss during the day, up to –39.9 W m-2.  The advective heat 

flux was significantly smaller than the conductive heat flux and was usually negative 

throughout the study period (-0.5 W m-2 to -10.8 W m-2). 

 

Heat gains and losses, as well as net heat fluxes, are presented in Table 4.3 for all periods.  

There was a significant difference between the observed and predicted total heat flux 

during Period 1;  predicted total heat gain was calculated at 42.9 W m-2 compared to the 

observed value of 23.8 W m-2.  Heat losses showed significant differences as well 

(predicted -8.6 W m-2 and observed -27.9 W m-2).  Among the net fluxes of Period 1 the 

surface fluxes (Hsur) were predominately gains (37.7 W m-2) and driven by incoming solar 

radiation (Hs = 30.0 W m-2) whereas streambed fluxes (Hbed) were predominately losses  

(-3.4 W m-2).  Among the streambed fluxes, both conduction and advective net heat 

fluxes were losses and of similar magnitude (Hb = -1.5 W m-2 and Hg = -1.9 W m-2; Table 

4.3).   

 



87 
 

Little Southwest Miramichi  

Air temperatures at LSWM were similar to that of Cat Bk during Period 1 (Figure 4.2a 

and 4.2e) while water temperature varied between 20.7°C and 28.7°C (Figure 4.2e).  

Observed (Ht(O)) and predicted (Ht(P)) total heat fluxes had similar patterns and 

exhibited significant agreement between the two time series.  Total heat flux at LSWM 

generally varied between –219 W m-2 and 587 W m-2; however there was a significant 

decline in the observed total flux during the night of day 209, to a low of -552 W m-2 

(Figure 4.2e).  Period 1 also had the poorest performance of all periods at LSWM, with a 

RMSE of 130.8 W m-2, an R2 of 0.922 and a bias of 89.2 W m-2 (Table 4.4). 

 

Surface and streambed heat fluxes were generally in opposite directions (Figure 4.2f) as 

with Cat Bk.  Surface heat fluxes were higher in LSWM than in Cat Bk with peak values 

reaching 386 W m-2 to 625 W m-2.  Streambed heat fluxes in LSWM were very similar to 

those in Cat Bk and ranged from –62 W m-2 to 21 W m-2.  Among the surface heat fluxes 

the net shortwave radiation was observed to be the major heat gain, reaching 660 W m-2.  

Evaporative fluxes and longwave radiation were the most significant heat losses, reaching 

-183 W m-2 (see in Figure 4.2g).  Precipitation on day 209 and 210 resulted in a shift 

toward energy losses (Hp) and ranged between -51.6 W m-2 and 5.5 W m-2.  The 

convective energy flux contributed very little to the surface flux (–22.8 W m-2 to 26.4     

W m-2).  The streambed heat flux by advection contributed to the energy loss in LSWM 

and varied between –13.8 W m-2 and –0.9 W m-2 (Figure 4.2h).  The streambed heat flux 

by conduction varied between –48.0 W m-2 during the day and 22.1 W m-2 at night.  
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Heat fluxes were also determined for LSWM for each period as shown in Table 4.3.  

Observed and predicted total heat gains were found to be different (observed = 98.2       

W m-2 and predicted = 130.8 W m-2) with an even greater difference for losses (observed 

= -115.6 W m-2 and predicted = -59.0 W m-2).  The surface fluxes (Hsur) represented a net 

gain (78.4 W/m2) and were driven by incoming solar radiation (Hs = 120.9 W m-2).  

Streambed fluxes represented a net loss of -6.6 W m-2, of which, both conduction and 

advective heat fluxes were losses (Hb = -2.4 W m-2 and Hg = -4.2 W m-2) of similar 

magnitude. 

 

4.1.2.2 PERIOD 2 

Catamaran Brook 

Cat Bk experienced very few clouds during Period 2 with the exception of the last day 

(day 226) where a slight increase in cloud cover was observed (Figure 4.3a).  Air 

temperatures during Period 2 varied between 6.8°C and 26.5°C, but day 225 was warmer 

because the air temperature never dropped below 12.7°C.  Water temperatures varied 

between 12.8°C and 19.4°C.  Observed total heat fluxes (Ht(O)) values were from -64.9 

W m-2 to 142 W m-2.  Predicted total heat fluxes (Ht(P)) values were slightly 

overestimated during the day, but showed agreement with observed values  at night, with 

both having values varying between -63.0 W m-2 and 195 W m-2.   The model showed a 

RMSE of 34.1 W m-2,a R2 of 0.792 and a  bias of -2.2 W m-2 (Table 4.4). 

 

Surface heat flux (Hsurf) was the dominant component during Period 2 with values ranging 

between -71.9 W m-2 to 236 W m-2.  However, on day 226, which had increased cloud 

cover, the surface heat flux reached a maximum of 51.1 W m-2 (Figure 4.3b).  During that 
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same day the streambed heat flux (Hbed) was important as an energy source, reaching a 

maximum value of 19.1 W m-2.  Streambed heat flux was usually negative during the day 

and slightly positive at the night. Conductive heat flux (Hb) was the dominant of the 

streambed heat flux, ranging between -35.2 W m-2 and 18.1 W m-2 (Figure 4.3d).  The 

groundwater contribution (Hg) was less than 8.3 W m-2. 

 

Most of the surface heat flux energy came from the net shortwave radiation (Hs) (Figure 

4.3c).  Evaporative heat flux (He) was mainly negative with very few hours having 

positive values (less than 3.9 W m-2).   Longwave radiation varied between -41.9 W m-2 

and 23.3 W m-2.  With a decrease in air temperature (day 226), the longwave radiation 

(Hl) and evaporative heat flux (He) became mostly negative.  The convective heat flux 

(Hc) was the smallest component of the surface heat flux (less than 12.5 W m-2).   

 

Agreement was observed between the predicted and observed energy gains and losses 

(see Table 4.3).  The observed gain (19.8 W m-2) was close to the predicted gain (20.9   

W m-2), while the observed loss rate (-19.7 W m-2) was slightly lower than the predicted 

loss (-22.9 W m-2).  Most of the energy gain was from the result of the net shortwave 

radiation (Hs = 16.3 W m-2).  The energy loss was a combination of the longwave 

radiation (Hl -8.0 = W m-2), evaporative heat flux (He = -7.6 W m-2) and the streambed 

heat flux (Hbed = -6.0 W m-2). 
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Figure 4.3.  Detailed analysis of heat fluxes at Catamaran Brook and Little Southwest 
Miramichi River for Period 2. 
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Little Southwest Miramichi 

During Period 2, strong agreement was observed between the predicted (Ht(P)) and the 

observed (Ht(O)) total heat flux, both varying between -272 W m-2 and 565 W m-2 (Figure 

4.3e), although a slight underestimation was observed during most nights.  Air 

temperature varied between 7.8°C to 27.1°C.  Water temperature varied between 15.1°C 

and 24.2°CMost energy gains and losses occurred via the surface (-243 W m-2 to 601     

W m-2). The contribution of the streambed was lower but still important (-53.7 W m-2 to 

25.7 W m-2) (Figure 4.3f).  The model performance gave a RMSE of 85.4 W m-2, a R2 of 

0.943 and a bias of 22.2 W m-2 for Period 2 (Table 4.4). 

 

Solar radiation (Hs) was the main source of energy with a maximum value reaching 674 

W m-2 (Figure 4.3e).  The longwave radiation (Hl = -18.5 W m-2 to -157 W m-2) and the 

evaporative heat flux (-7.4 W m-2 to -158 W m-2) only induced energy losses during this 

period.  The smallest component of the surface heat flux was the convective heat flux (Hc) 

with values within ±29.4 W m-2.  The energy from the streambed occurred as conduction 

(Hb = -42.8 W m-2 to 24.8 W m-2), with a small contribution from groundwater flow (Hg 

less than ±11.2 W m-2, Figure 4.3h). 

 

The net surface heat flux (Hsurf) represented an energy gain (34.6 W m-2; Table 4.3), 

whereas the net streambed (Hbed) showed an energy loss (-6.4 W m-2).  The solar radiation 

(Hs) was the major component of surface heat flux, with an energy gain of 109 W m-2. 

The major contributors to the energy losses were longwave radiation (Hl = -45.4 W m-2) 

and evaporative heat flux (He = -25.7 W m-2).   
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4.1.2.3 PERIOD 3 

Catamaran Brook 

Period 3 was selected as a period because it included days with relatively low flows.  Air 

temperature during Period 3 varied between 2.5°C to 21.6°C, and water temperature 

varied between 10.5°C and 15.5°C (Figure 4.4a).  The predicted total heat flux (Ht(P)) 

was clearly overestimated during this period.  Predicted total heat flux (Ht(P)) varied from 

–62.3 W m-2 to 205 W m-2, however, the observed total heat flux (Ht(O)) only varied 

between values of –45.8 W m-2 and 95.8 W m-2.  The RMSE, the R2 and the bias for 

Period 3 at Cat Bk were 30.3 W m-2, 0.875, and -4.8 W m-2  respectively (Table 4.4). 

 

The surface heat flux (Hsurf) was the major component of the total heat flux, varying 

between -80.4 W m-2 and 246 W m-2 (Figure 4.4b).  The streambed contribution (Hbed) 

was lower, with energy values ranging between –45.9 W m-2 and 22.9 W m-2.  Solar 

radiation (Hs) was the dominant source of energy with heat fluxes reaching up to 253     

W m-2 (Figure 4.4c).  Energy losses were primarily due to longwave radiation (Hl = -45.5 

W m-2 to 18.7 W m-2), and secondarily to the evaporation (He = -33.5 W m-2 to 2.9         

W m-2).  Convective heat flux (Hc) varied from –12.5 W m-2 to 10.4 W m-2.  The 

streambed heat flux (Hbed) was mainly composed of the conductive heat flux (Hb), with 

values ranging from –38.2 W m-2 to 20.2 W m-2 (Figure 4.4d).  The groundwater heat flux 

(Hg) was less than 7.7 W m-2. 
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Figure 4.4. Detailed analysis of heat fluxes at Catamaran Brook and Little Southwest 
Miramichi River, for Period 3. 
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Predicted total heat flux (Ht(P)) resulted in a slight overestimation of the observed total 

heat  flux (Ht(O)) (Ht(P) = 21.2 Wm-2; Ht(O) = 15.7 W m-2), but  showed significant 

agreement for the energy loss (Ht(P) = -16.8 W m-2; Ht(O) = -16.4 W m-2) (Table 4.3).  

Most of the energy gain was due to solar radiation (Hs = 15.5 W m-2) with a significant 

contribution coming from the streambed (Hbed = 4.2 W m-2).  The energy loss was divided 

equally between the longwave radiation and evaporative heat flux (Hl = He = -9.6 W m-2).  

The streambed contribution in terms of energy loss was -4.7 W m-2. 

 

Little Southwest Miramichi 

Air temperatures, for Period 3 at LSWM, varied from 4.4°C to 22.2°C (Figure 4.4e).  

Water temperature showed similar variations throughout the period, with values between 

13.1°C and 21.0°C.  A better level of prediction than at Cat Bk was observed (Figure 

4.4e), comparing predicted (Ht(P)) and observed (Ht(O)) total heat flux.  Total heat fluxes 

varied between values of –260 W m-2 and 500 W m-2.  The RMSE, the R2 and the bias 

were of 72.6 W m-2, 0.947 and 12.9 for Period 3 (Table 4.4). 

 

Surface heat flux (Hsurf) dominated the total heat flux with values ranging between –230 

W m-2 and 511 W m-2 (Figure 4.4f) whereas the streambed flux (Hbed) was smaller (-57.2 

W m-2 to 27.4 W m-2).  Solar radiation (Hs) varied similarly throughout the period 

(maximum of 655 W m-2) as shown in Figure 4.4g.  The longwave radiation (Hl) and the 

evaporative heat flux (He) were the major contributors to the energy losses, with values 

less than –157 W m-2 and –123 W m-2, respectively.  The smallest component of the 

surface flux was the convective heat flux (Hc = -32.5 W m-2 to 11.5 W m-2).  The main 

contributor to the streambed heat flux (Hbed) was the conductive heat flux (Hb = -46.5     
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W m-2 to 24.8 W m-2).  Groundwater (Hg) contribution was less than 10.7 W m-2 (Figure 

4.4h). 

 

4.1.2.4 PERIOD 4 

Catamaran Brook 

During Period 4, days 242 and 243 received over 35 mm of rain, where a significant 

decrease in air (25.9°C to 3.6°C) and water (18.6°C to 11.5°C) temperature was observed 

(Figure 4.5a).  Only a slight discrepancy was observed between the observed and 

predicted total heat flux, mostly as an overestimation during the day (RMSE = 23.2        

W m-2, R2 = 0.819 and bias = -1.1 W m-2; Table 4.4).  Predicted total heat flux varied 

between –64.3 W m-2 and 161 W m-2, whereas the observed total heat flux was lower and 

varied between –71.9 W m-2 and 113 W m-2. 

 

As shown in Figure 4.5b, during the rain event, surface heat flux was low (Hsurf = -79.2  

W m-2 to 186 W m-2), but still higher than the streambed heat flux.  Solar radiation (Hs) 

had very low values (< 158 W m-2), especially during the storm event (< 44.9 W m-2).  

The longwave radiation (Hl) had higher values during the storm event (-13.9 W m-2 to 

11.4 W m-2) compared to the following days (-45.5 W m-2 to –2.2 W m-2).  Evaporative 

heat flux (He) followed similar patterns as the longwave radiation, with values between   

–23.7 W m-2 and 8.5 W m-2.  Convective heat flux (Hc) was very small throughout the 

period with variation of energy gains or losses less than 12.6 W m-2.  Precipitation heat 

flux (Hp) was less than 0.1 W m-2 for the entire period. 
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Figure 4.5.  Detailed analysis of heat fluxes at Catamaran Brook and Little Southwest 
Miramichi River for Period 4. 
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Streambed heat flux (Hbed) fluctuated between –44.9 W m-2 and 20.8 W m-2, mainly due 

to conductive heat flux (Hb).  Conductive heat flux varied between –36.7 W m-2 and 18.5 

W m-2, however following the rain event (day 243-244), it remained as an energy gain 

(0.5 W m-2 to 11.1 W m-2).  Heat flux by advection (Hg) was very small, less than 8.5     

W m-2 and mainly an energy loss during most days (Figure 4.5h). 

 

Predicted total heat flux (Ht(P)) showed agreement with the observed total heat flux 

(Ht(O)) (Table 4.3).  The predicted total energy gain was of 12.3 W m-2 (Ht(O) = 12.9    

W m-2) and observed total heat flux was of -16.8 W m-2 (Ht(O) = 12.9 W m-2).  Most of 

the energy gain was from the solar radiation (Hs = 8.1 W m-2) with an important 

contribution from the streambed (Hbed = 2.5 W m-2).  The energy loss was mainly from 

the longwave radiation (Hl = -7.5 W m-2) followed closely by the evaporative heat flux 

(He = -4.7 W m-2) and the streambed heat flux (Hbed = -3.3 W m-2). 

 

Little Southwest Miramichi 

As in Cat Bk, LSWM showed a decrease of air temperature during period 4 (27.3°C to 

4.6°C) and water temperature (23.6 °C to 13.6°C) caused by a significant precipitation 

event during day 242 and 243 (35 mm of rain).  Total heat flux predictions were close to 

observed values even if substantial precipitation occurred, showing a RMSE of 64.2       

W m-2, a R2 of 0.947 and a bias of 19.5 W m-2 (Table 4.4).  Predicted (Ht(P)) and 

observed (Ht(O)) total heat flux both varied between –252 W m-2 and 511 W m-2 (Figure 

4.5e).  
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Surface heat flux (Hsurf = -238 W m-2 to 556 W m-2) was mostly dominated by solar 

radiation (Hs) during the day and the longwave (Hl) and evaporative (He) heat flux at 

night (Figure 4.5e and 4.5f).  Longwave radiation was mostly negative, with slight energy 

gains (-161 W m-2 to 4.0 W m-2), whereas the evaporative heat flux was observed as only 

an energy loss (-96.7 W m-2 to –4.7 W m-2).  Convective heat flux (Hc) varied  between    

-31.1 W m-2 and 17.3 W m-2.  Precipitation heat flux (Hp) contributed less than 0.3 W m-2 

to the energy budget. 

 

Conductive heat flux (Hb) varied between –44.7 W m-2 and 26.4 W m-2 and was the main 

component of the streambed heat flux (–56.0 W m-2 and 29.4 W m-2; Figure 4.5f).  

Conductive heat flux in LSWM, similar to Cat Bk, had two days of only heat gains 

(Figure 4.5h).  The groundwater flow (Hg) contributed less than 11.3 W m-2 and acted 

primarily as energy loss. 

 

Predicted total heat flux showed a net energy gain (6.9 W m-2), whereas the observed total 

heat flux showed a net energy loss (-12.5 W m-2) for Period 4 (Table 4.3).  Most energy 

gain came from the net shortwave radiation (Hs =82.1 W m-2).  The longwave radiation 

(Hl) and the evaporative heat flux (He) were responsible for most of the energy lost, with 

values of –39.0 W m-2 and –18.8 W m-2 respectively.  The net contribution of the 

streambed heat flux (Hbed) was very small, at –0.6 W m-2. 
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4.1.2.5 PERIOD 5 

Catamaran Brook 

Cat Bk showed a decrease of air and water temperature followed by an important increase 

during period 5 (Figure 4.6a). Air temperature reached a low minimum on day 249 (-0.7 

°C) and increased through day 251 (26.8 °C).  Water temperature followed the same 

pattern as air temperature, but with values between 8.4 °C to 18.6 °C.  Predicted total heat 

flux (Ht(P) = -68.3 W m-2 to 107 W m-2) generally overestimated the observed total heat 

flux (Ht(O) = -35.9 W/m2 to 78.2 W m-2), mostly during the night.  The model 

performance during Period 5 (Table 4.4) showed a RMSE of 24.8 W m-2, a R2 of 0.836 

and a bias of -1.6 W m-2. 

  

During the decrease in water temperature, the surface heat flux was very low (minimum 

of –90.0 W m-2; Figure 4.6b) and mainly negative due to strong longwave radiation 

(minimum of -49.0 W m-2) and evaporative heat flux (minimum of -37.5 W m-2).  

However, during the increase of water temperature, the surface heat flux increased as well 

(up to 158 W m-2), also caused by the increased longwave radiation (Hl) and evaporative 

heat flux (He), reaching values as high as 40 W m-2.  Solar radiation (Hs) varied in a 

similar manner throughout the period with values reaching a maximum around 90 W m-2 

(Figure 4.6c). 

 

In contrast to the surface heat flux (Hsurf), the streambed (Hbed) contribution was mainly 

positive during the decrease in both air temperatures and water temperatures (-50.9 W m-2 

to 27.6 W m-2), although smaller than the surface heat flux (Figure 4.6b).  During the 

increase in water temperature, the streambed heat flux decreased and became an energy 
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loss and reached a value of – 50.9 W m-2.  Most fluctuations of the streambed heat flux 

was attributed to the conductive heat flux (Hb) with values varying between –42.0 W m-2 

and 23.4 W m-2 (Table 4.6d).  The (Hg) by advection followed the same variation as the 

conductive heat flux, but had smaller values (less than 9.1 W m-2). 

 

Predicted total heat flux showed a net energy loss (-1.4 W m-2; Table 4.3), whereas the 

observed total heat flux showed a net energy gain (1.7 W m-2).  Most of the energy gain 

came from the solar radiation (Hs= 8.1 W m-2), but the contribution of longwave radiation 

(Hl = 2.2 W m-2), evaporative heat flux (He = 2.4 W m-2) and streambed heat flux (Hbed = 

2.9 W m-2) were present as well.  Energy loss was divided among the longwave radiation 

(Hl =-6.4 W m-2), the evaporative (He = -5.8 W m-2) and streambed (Hbed = -5.0 W m-2) 

heat flux.  

 

Little Southwest Miramichi 

As in Cat Bk, air the water temperatures in Period 5 (LSWM) showed a decreased in the 

first few days (days 247 to 249), followed by a rapid increase afterward (Figure 4.6e).  

Air temperatures decreased as low as 0.7 °C, and increased to a maximum value of 28.8 

°C.  Water temperatures fluctuated between 10.4 °C and 23.9 °C.  Predicted total heat 

flux (Ht(P) = -199 W m-2 to 600 W m-2) was closely followed by the observed total heat 

flux (Ht(O) = -253 W m-2 to 550 W m-2), giving results of an RMSE of 82.6 W m-2, a R2 

of 0.915 and a bias of 19.9 W m-2  (Table 4.4). 
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Figure 4.6.  Detailed analysis of heat fluxes at Catamaran Brook and Little Southwest 
Miramichi River for Period 5. 
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Surface heat flux (Hsurf) was lower in the first two days (-215 W m-2 to 274 W m-2) as 

shown in Figure 4.6f and increased to higher values afterward (-109 W m-2 to 633 W m-2).  

Streambed heat flux varied between –72.7 W m-2 and 32.6 W m-2.  Solar radiation (Hs) 

was the main component of surface heat flux, and remained relatively constant 

throughout the period, reaching maximums over 420 W m-2.  Surface heat flux variations 

were the result of fluctuations in the longwave radiation (Hl) and evaporative heat flux 

(He) (Figure 4.6g).  In the first two days, the longwave radiation (≤ -69.2 W m-2) and the 

evaporative heat flux (≤ -27.3 W m-2) acted only as an energy loss, but increased 

thereafter with positive values (Hl = -91.5 W m-2 to 61.3 W m-2; He = -54.2 W m-2 to 16.0 

W m-2).  The convective heat flux (Hc) varied between –30.8 W m-2 to 33.0 W m-2. 

 

Streambed heat flux (Hbed) varied between -72.7 W m-2 and 32.6 W m-2 throughout Period 

5, mainly in the form of conductive heat flux (Figure 4.6d).  Conductive heat flux (Hb) 

was higher during the decrease of air and water temperatures (-17.5 W m-2 to 28.4          

W m-2), and decreased thereafter to lower values (-60.3 W m-2 to 5.9 W m-2) as shown in 

Table 4.6h.  The heat flux by advection (Hg) varied between –13.3 W m-2 and 4.4 W m-2.   

 

Predicted heat gains were overestimated (predicted = 93.3 W m-2; observed = 82.4 W m-2; 

Table 4.3), whereas the heat losses were underestimated (predicted = -63.5 W/m2; 

observed = -72.4 W m-2).  Shortwave radiation (Hs = 82.1 W m-2) accounted for most of 

the heat gains (87.0 W m-2).  The major component of heat loss was the longwave 

radiation (Hl) with a heat loss of –33.3 W m-2.  The evaporative (He) and streambed heat 

flux (Hbed) also contributed significantly to the energy loss, with heat losses of –15.6 W 

m-2 and -10.0 W m-2, respectively. 
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4.1.2.6 PERIOD 6 

Catamaran Brook  

In order to contrast conditions during Period 1 (summer conditions), Period 6 was 

selected because it represented more typical autumn conditions.  As such, Period 6 had 

colder air temperature (4.8 °C to 22.2 °C) and the solar radiation was significantly 

reduced compared to summer conditions (Table 4.2).   

 

Both observed (Ht(O)) and predicted (Ht(P)) total heat fluxes showed relatively small 

variability during most days (–52.6 W m-2 and 85.0 W m-2) as indicated in Figure 4.7a.  

During Period 6, a strong agreement was observed between predicted and observed heat 

fluxes and the total heat flux was almost neutral at night (no heat losses or gains) for most 

days.  During Period 6, Cat Bk showed the best overall performance of all periods, with 

RMSE of 17.7 W m-2, a R2 of 0.806 and a bias of -1.0 W m-2 (Table 4.4).  When looking at 

the surface vs. streambed heat fluxes, fluxes were observed to be low especially at night 

(Figure 4.7c and Figure 4.7d).  For example, surface heat fluxes (Hsurf) varied between     

–65.3 W m-2 and 114 W m-2 whereas streambed heat fluxes (Hbed) varied between -35.6 

W m-2 and 16.0 W m-2.  Peak fluxes from solar radiation (Hs) during this period were less 

than 53.9 W m-2 (Figure 4.7c).  Precipitation heat flux (Hp) was between -2.5 W m-2 and 

14.8 W m-2.  The streambed heat flux (Hbed) was still dominated by conductive heat flux 

(-29.5 W m-2 to 14.1 W m-2). The advective heat flux (Hg) was small with values ranging 

between -6.1 W m-2 and 1.9 W m-2. 
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Water temperatures were similar among days of Period 6, varying between 10.0 °C 14.6 

°C.  Total heat gains and losses were lower during Period 6 and of similar magnitude 

(Table 4.3).  For instance, predicted total heat gain was at 11.3 W m-2 (observed value = 

8.2 W m-2) whereas the total heat loss was -13.0 W m-2 (observed = -8.9 W m-2).  

Although small, surface heat gains (Hsurf) were dominated by solar radiation gains        

(Hs =5.8 W m-2) and heat losses were dominated by the net longwave radiation (Hl = -6.2 

W m-2).  The net streambed fluxes (Hbed) were -1.1 W m-2 for this period. 

 

Little Southwest Miramichi 

Water temperatures for LSWM during Period 6 were slightly higher than in Cat Bk with 

values ranging from 11.6 °C to 18.3 °C (Figure 4.7e).  In a manner similar to Cat Bk, 

water temperatures increased in LSWM during the first two days (day 268-269) and then 

generally decreased until the end of the period. 

  

Observed and predicted total heat fluxes showed agreement during period 6 in LSWM 

(between –216 W m-2 and 365 W m-2).  In fact, Period 6 had the best performance of all 

the periods at LSWM (RMSE = 55.8 W m-2; R2 = 0.910; bias = 0.1 W m-2) shown in 

Table 4.4.  Surface heat fluxes were similar for most days of Period 6 (-207 W m-2 to 383 

W m-2), with the exception of day 270-271 showing lower peak heat gains (< 238 W m-2), 

as shown in Figure 4.7f.  Surface heat fluxes (Hsurf) were generally smaller than during 

Period 1 at LSWM reflecting more autumn conditions. For instance, peak net shortwave 

radiation (Hs) was between 217 W m-2 and 349 W m-2 with the exception of day 272 

where values reached 516 W m-2 (Figure 4.7g).  The net longwave radiation (Hl) was a 

major source of heat loss in Period 6 with values ranging from -149 W m-2 to 72.0 W m-2.   
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Figure 4.7.  Detailed analysis of heat fluxes at Catamaran Brook and Little Southwest 
Miramichi River for Period 6. 
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Precipitation heat flux (Hp) varied between -18.2 W m-2 and 12.9 W m-2 over two days.  

Similar to Cat Bk, streambed heat fluxes (Hbed) were small.  Heat flux by conduction (Hb) 

varied between –33.9 W m-2 to 21.0 W m-2 (Figure 4.7h).  The advective heat flux (Hg) 

component was also relatively small (-7.7 W m-2 to 2.6 W m-2). 

 

Total heat gains and losses, observed and predicted, for LSWM showed agreement during 

Period 6 (Table 4.3).  The predicted heat gain was 53.9 W m-2 (observed value = 47.2    

W m-2) whereas the predicted heat loss was -57.4 W m-2 (observed value = -50.6 W m-2).  

Among the net fluxes for LSWM, the surface fluxes (Hsurf) represented a net loss (-2.3   

W m-2).  The heat gains were mainly from solar radiation (43.8 W m-2) whereas, heat 

losses were predominately from both the net longwave radiation (-34.4 W m-2) and 

evaporative fluxes (-9.3 W m-2).  The heat gain was dominated by incoming solar 

radiation (Hs = 43.8 W m-2).  The streambed fluxes (Hbed) represented a net loss of -1.1  

W m-2 for the period and were dominated by the advective heat fluxes (Hg = -1.4 W m-2). 

 

4.1.3 COMPARISON TOTAL HEAT FLUXES AND WATER TEMPERATURES 

(OBSERVED VS. PREDICTED) 

A comparison of observed vs. predicted total heat gains and losses was carried out for Cat 

Bk and LSWM for all 6 periods (Figure 4.8).  It can be observed from this figure that heat 

gains and losses show good agreement between observed and predicted values for all 

periods except Period 1.  In fact, during Period 1 heat gains were significantly 

overestimated, whereas heat losses were underestimated for both Cat Bk and LSWM.  For 

other periods, heat gains were well predicted for Cat Bk and even better predicted for 
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LSWM.  In contrast, heat losses showed less agreement between observed and predicted 

fluxes. 

 

 
 
Figure 4.8.  Predicted vs. observed total heat fluxes (gains and losses) for each study 
period (1 to 6) at Catamaran Brook and Little Southwest Miramichi River using the 
deterministic model. 
 
 
 
Figures 4.9 and 4.10 show observed and predicted water temperatures at Cat Bk and 

LSWM using the deterministic model.  The predicted water temperatures were calculated 

using the predicted total heat flux (Ht(P)), in Equation 3.3b.  Table 4.5 shows the 

modeling performance results (RMSE, R2, bias) between the observed and predicted water 

temperatures.  As with the total heat flux, water temperatures were best predicted in 

Period 6 and had poorer performance in Period 1, at both LSWM and Cat Bk.  Water 

temperatures at Cat Bk were closely estimated for all periods (Figure 4.9).  In Period 1, 

predicted water temperatures showed a slight overestimation of minimum and maximum 

water temperatures, although less than 1 °C.  The other periods also showed days with a 
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slight overestimation of the maximum water temperatures. The deterministic model was 

effective in all periods with RMSEs less than 0.33 °C, R2 higher than 0.970 and biases less 

than 0.20 °C.  Results at LSWM showed equally good performance of the model (Figure 

4.10), with RMSEs less than 0.23 °C, R2 higher than 0.992 and biases less than 0.16 °C 

for all six periods (Table 4.5).   

 
 
Table 4.5.  Performance of deterministic model on the basis of predicted vs. observed 
water temperatures. 
 

 

 

 

 

 

  Catamaran Brook Little Southwest Miramichi 

Period   RMSE (°C) R2 Bias (°C)  RMSE (°C) R2 Bias (°C) 

        
Period 1  0.33 0.970 0.20 0.23 0.994 0.16 
Period 2  0.25 0.979 -0.01 0.18 0.994 0.04 
Period 3  0.29 0.969 -0.05 0.19 0.993 0.03 
Period 4  0.18 0.991 0.00 0.14 0.996 0.04 
Period 5  0.24 0.994 -0.02 0.21 0.996 0.05 
Period 6  0.18 0.983 -0.01 0.15 0.992 0.00 
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Figure 4.9.  Observed water temperatures (Tw(O)) and predicted water temperatures 
(Tw(P)) at Catamaran Brook calculated from the predicted total heat flux using the 
deterministic model. 
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Figure 4.10.  Observed water temperatures (Tw(O)) and predicted water temperatures 
(Tw(P)) at Little Southwest Miramichi calculated from the predicted total heat flux using 
the deterministic model. 
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4.2 EQUILIBRIUM TEMPERATURE MODEL 

An equilibrium temperature model was developed to predict hourly water temperatures at 

both Cat Bk and LSWM.  A linear relationship was used to calculate the equilibrium 

temperature for both studied watercourses, as presented in Equation (3.21).  The 

coefficients α and β were optimized using the minimum square of errors between the 

predicted and observed water temperatures for the calibration years (1998-2002).  The 

linear regression coefficient α was calculated at 0.87 at Cat Bk and slightly higher at 

LSWM with 1.08.  The linear regression coefficient β was 0 °C at both study streams.  A 

constant thermal exchange (K) was calculated with a value of 2.7 W m-2 °C-1 at Cat Bk 

and of 13.1 W m-2 °C-1 at LSWM.  These parameters were then used to estimate hourly 

water temperatures using Equation (3.24).  The above parameters developed during the 

calibration period (i.e., linear regression between air and equilibrium temperature and the 

thermal exchange coefficient (K)) were then used to validate the model (years 2003-

2007). 

 

A sensitivity analysis was performed to address the uncertainty of the model’s coefficient 

α  and the thermal exchange coefficient K of the equilibrium temperature model.  For 

instance, based on literature, the coefficient (α) would most likely be between 0.9 to 1.1 

and K would be between 2 W m-2 °C-1 and 30 W m-2 °C-1.  The results of the sensitivity 

analysis showed that the current water temperature model was more sensitive to the 

air/equilibrium temperature linear coefficient (α) than the thermal exchange coefficient 

(K).  At Cat Bk, if K was increased or decreased by 50%, the increase in RMSE was 

generally within 9%, which represented an increase of error less than 0.14°C for both the 

calibration and validation periods.  At LSWM, the same modifications in K (±50%) 
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produced changes in RMSE of less than 9% (0.46 °C).  The model’s coefficient α was 

more sensitive than K.  This coefficient only needs a slight change of 5% (0.04 at Cat Bk 

and 0.05 at LSWM) to increase the error by 0.2 °C.  Modification of α by 25% (0.13 to 

0.16) can increase the RMSE by 2 °C to 2.5 °C.  This suggests that the estimation of α 

(i.e., representing the total heat flux at the water surface) is the most important parameter 

of the current equilibrium temperature model.   

 

Figures 4.11 and 4.12 show predicted vs. observed water temperatures for each year at 

both Cat Bk and LSWM.  Some years had days without measurements due to equipment 

malfunctions and were not included in the modeling.  Figures 4.11a-e show the 

calibration years at Cat Bk.  Results showed reasonable agreement between predicted and 

observed water temperatures.  However, some periods were clearly overestimated, spring 

of 1998 and 2001, and some periods clearly showed underestimation, late autumn 1999 

and 2002.  Overall, the year 1998 showed significant overestimation of water 

temperatures during the high summer temperatures (days 165 to 225).   
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Figure 4.11.  Observed water temperatures (Tw(O)) and predicted  water temperatures 

(Tw(P)) obtained from the equilibrium temperature model at Catamaran Brook. 
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Figure 4.11.  Observed water temperatures (Tw(O)) and predicted  water temperatures 
(Tw(P)) obtained from the equilibrium temperature model at Catamaran Brook. 
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Figure 4.12.  Observed water temperatures (Tw(O)) and predicted  water temperatures 
(Tw(P)) obtained from the equilibrium temperature model at Little Southwest Miramichi. 



116 
 

2003

0

5

10

15

20

25

30

35

105 125 145 165 185 205 225 245 265 285 305

T
w
 (

°C
)

Tw (O)

Tw (P)f)

2004

0

5

10

15

20

25

30

105 125 145 165 185 205 225 245 265 285 305

T
w
 (

°C
)

Tw (O)

Tw (P)g)

2005

0

5

10

15

20

25

30

35

105 125 145 165 185 205 225 245 265 285 305

T
w
 (

°C
)

Tw (O)

Tw (P)h)

2006

0

5

10

15

20

25

30

105 125 145 165 185 205 225 245 265 285 305

T
w
 (

°C
)

Tw (O)

Tw (P)i)

2007

0

5

10

15

20

25

30

35

105 125 145 165 185 205 225 245 265 285 305

T
w
 (

°C
)

Tw (O)

Tw (P)j)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.12.  Observed water temperatures (Tw(O)) and predicted  water temperatures 
(Tw(P)) obtained from the equilibrium temperature model at Little Southwest Miramichi. 
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The validation years (2003-2007) indicated in Figures 4.11f-j, showed results similar to 

those of the calibration years, with clear over-estimation in spring periods, especially 

years 2003 and 2007.  An underestimation was also observed in the last few days of 

autumn (days 285-305).  During most days, for all the years, predicted water temperature 

did not seem to effectively capture the diel variation.   

 

Results were similar for the LSWM (Figures 4.12a-e).  Spring water temperatures were 

also overestimated during the calibration years, especially in years 1998 and 1999, 

however, a clear underestimation was not observed in autumn similar to the calibration 

period at Cat Bk.  The year 1998 showed less overestimation during the summer.  For the 

validation years (Figures 4.12f-j), important overestimation was also observed in spring 

and early summer (2003, 2005 and 2006), but agreement was observed in late autumn, 

unlike in Cat Bk. 

 

Table 4.6 shows the model performance of the developed equilibrium temperature model 

for the calibration years, the validation, for all years and for each year.  The model 

performance was similar throughout the years at Cat Bk (all years: RMSE = 1.52 °C, R2 = 

0.914 and bias = -0.15 °C), although the calibration years were slightly better (RMSE = 

1.49 °C, R2 = 0.920 and bias = -0.01 °C).  The validation period performance was similar 

with a RMSE of 1.54 °C, a R2 of 0.910 and a bias of –0.29 °C.   

 

At LSWM, the calibration years showed the best performance (RMSE = 1.81 °C, R2 = 

0.923 and bias = -0.03 °C).  Unlike Cat Bk, the validation years at LSWM showed a 

poorer performance, with a RMSE of 2.15 °C, a R2 of 0.877 and a bias of -0.15 °C, than 
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the calibration period.  Overall, the LSWM showed a significant agreement between 

predicted and observed water temperatures with an overall (all years) RMSE of 1.98 °C a 

R2 of 0.902 and a bias of  -0.09 °C. 

 

Table 4.6.  Results of the equilibrium temperature model for prediction of hourly water 
temperatures at Catamaran Brook and Little Southwest Miramichi. 

 Catamaran Brook Little Southwest Miramichi

Period  RMSE (°C) R2 Bias (°C)  RMSE (°C) R2 Bias (°C)

       
Calibration (1998-2002) 1.49 0.920 -0.01 1.81 0.923 -0.03 
       
1998 1.53 0.924 0.93 1.92 0.907 0.87 
1999 1.63 0.918 -0.21 1.86 0.933 0.05 
2000 1.35 0.937 -0.53 1.60 0.936 -0.31 
2001 1.55 0.928 0.21 1.84 0.919 -0.25 
2002 1.37 0.950 -0.46 1.81 0.946 -0.66 
       
Validation (2003-2007) 1.54 0.910 -0.29 2.15 0.877 -0.15 
       
2003 1.55 0.925 0.36 2.02 0.924 0.51 
2004 1.46 0.924 -0.51 2.18 0.851 -0.70 
2005 1.50 0.924 -0.27 2.19 0.897 0.23 
2006 1.62 0.892 -0.72 2.09 0.885 -0.16 
2007 1.60 0.903 -0.43 2.28 0.758 -0.81 
       
All years (1998-2007)  1.52 0.914 -0.15  1.98 0.902 -0.09 

 Seasonal Analysis 
Calibration (1998-2002)  

Spring 1.74 0.872 0.25 2.01 0.885 0.21 
Summer 1.44 0.714 -0.07 1.87 0.709 -0.21 
Autumn 1.10 0.913 -0.32 1.37 0.908 0.06 

       
Validation (2003-2007)       

Spring 1.92 0.856 0.17 2.34 0.844 0.75 
Summer 1.38 0.764 -0.42 2.21 0.651 -0.62 
Autumn 1.28 0.881 -0.65 1.59 0.845 -0.24 

       
All years (1998-2007)       

Spring 1.82 0.864 0.21 2.17 0.863 0.47 
Summer 1.41 0.735 -0.24 2.05 0.676 -0.42 
Autumn 1.19 0.896 -0.48  1.47 0.885 -0.07 
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A seasonal analysis was also performed to examine the performance of the model under 

different conditions.  Three seasons were selected (spring, summer and autumn).  Spring 

was between April 15 and June 20 (day 105-171), summer between June 21 and 

September 20 (day 172-263) and autumn between September 22 and October 31 (day 

264-305).  At both Cat Bk and LSWM, spring showed poorer performance of all periods 

although its performance was better during the calibration period.  At Cat Bk, the 

performance in spring had a RMSE between 1.74 °C and 1.92 °C, R2 between 0.856 and 

0.872 and a bias between 0.17 °C and 0.25 °C.  At LSWM, the performance in spring 

showed a RMSE between 2.01 °C and 2.34 °C, R2 between 0.844 and 0.885 and a bias 

between 0.21 °C and 0.75 °C.  Autumn showed the best performance for watercourses, 

and best performances were observed during the calibration years.  In autumn, RMSEs 

were as low as 1.10 °C to 1.28 °C at Cat Bk and 1.37 °C to 1.59 °C at LSWM.  The R2 

ranged between 0.845 and 0.913 the bias varied between –0.48 °C and 0.06 °C for both 

Cat Bk and LSWM.  At LSWM, spring and summer had similar performances.  At Cat 

Bk, the performance in summer was close to the autumn performances. 

 

Four different time periods of 7 days were selected over the entire study period (1998-

2007) to compare observed (Tw(O)) and predicted (Tw(P)) water temperatures as a 

function of air temperature (Ta).  They were selected to examine in more detail the 

performance of the equilibrium temperature model under different meteorological and 

hydrological conditions.  The selection of periods was made to include two training 

periods and two validation periods over the three seasons: spring, summer and autumn 

(Table 4.7).  Results are presented in Figure 4.13.  The two training periods consisted of 

1) days in summer of 1998 (days 221-227) where a significant change in temperature was 
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observed and 2) in spring 1999 (days 132-138) where water temperatures increased 

rapidly.  The two validation periods included a period of autumn 2006 (days 292-298) to 

reflect the autumn conditions and days of summer 2007, to look at the warmest 

temperature conditions (days 203-209).   

 

Table 4.7.  Description of the four selected study periods to examine the performance of 
the water temperature model under different hydrological conditions. 
 

Sample Season Year Day of 
year 

Dates Hydrological Conditions 

Training Summer 1998 221-227 August 9 –  
August 15 

Sudden decrease of air and water 
temperatures 

Training Spring 1999 132-138 May 12 –  
May 18 

Gradual increase of air and water 
temperatures 

Validation Autumn 2006 292-298 October 19 –  
October 25 

Autumn conditions 

Validation Summer 2007 203-209 July 22 –  
July 29 

Warmest temperature conditions 

 

 

In the first detailed period, including days 221 to 227 (August 9 to 15, 1998), air 

temperatures decreased rapidly from 31.7 °C to 4.6 °C at both Cat Bk and LSWM over a 

period of 5 days (Figures 4.13a and 4.13b).  Predicted water temperature did not 

effectively predict the observed water temperature, especially during the decrease of air 

and water temperatures.  At Cat Bk, where observed water temperatures (Tw(O)) varied 

from 19.4 °C to 11.8 °C, predicted water temperatures (Tw(P)) never decreased to less 

than 15.7 °C.  At LSWM, before the decreased of air and water temperatures, both 

predicted and observed water temperatures were around 26 °C before the decrease.  

However, observed water temperatures showed values as low as 14.2 °C, whereas the 

lowest predicted water temperatures was 17.8 °C.  It was only towards the end of the 

period that predicted water temperature became close to observed values. 
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Figure 4.13.  Observed water temperatures (Tw(O)), predicted  water temperatures (Tw(P)) 
from the equilibrium temperature model and air temperatures (Ta) for four detailed time 
periods at Catamaran Brook and Little Southwest Miramichi. 
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For the period in spring of 1999 from May 12 to May 18 (days 132 to 138), air 

temperatures varied between –3.5 °C and 26.4 °C (Figures 4.13c and 4.13d).  Observed 

water temperatures varied similarly at both streams (4.7 °C to 18.2 °C).  Predicted water 

temperatures showed a general increasing trend; however it was not possible to capture 

the diel variations observed in water temperatures.  Predicted water temperatures varied 

from 6.2 °C to 12.2 °C at Cat Bk, and were higher at LSWM, varying between 7.2 °C and 

16.5 °C. 

 

Air and water temperatures were low during the period of autumn 2006 (days 292 to 298: 

October 19 to 25).  Air temperatures were higher in the first 3 days, and decreased 

slightly afterwards anywhere between 2.4 °C and 12.0 °C (Figures 4.13e and 4.13f).  

Water temperatures did not showed much diel variability during those days.  In fact, 

water temperatures only slightly varied between 6.4 °C and 9.8 °C at both Cat Bk and 

LSWM.  Predicted water temperatures at Cat Bk did not truly represent observed water 

temperatures, with values ranging between 4.4 °C and 6.3 °C.  At LSWM, predicted 

water temperatures showed a better agreement with the observed water temperatures, 

between 5.4 °C and 9.1 °C.  

 

The validation period during the summer of 2007 included the warmest air and water 

temperatures (days 203 to 209; July 22 to 29).  Air temperatures increased from 6.9 °C to 

reach temperatures as high as 31.6 °C (Figures 4.13g and 4.13h).  Observed water 

temperatures at Cat Bk (13.6 °C to 22.4 °C) varied similarly as in LSWM (16.8 °C to 28.9 

°C).  Predicted water temperatures generally showed an increasing trend, however, the 
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diel variations were not captured by the model.  Water temperatures varied between 14.7 

°C and 20.5 °C at Cat Bk, and between 18.0 °C and 26.4 °C at LSWM. 

 

4.3 ARTIFICIAL NEURAL NETWORK MODEL 

In the present study, an ANN model was developed to predict hourly water temperature 

for two Catamaran Brook (Cat Bk) and the Little Southwest Miramichi (LSWM).  The 

results of the ANN models (RMSE, R2, and bias) are represented in Table 4.8.  The ANN 

model generally provided the best results for Cat Bk with a root-mean-square error 

(RMSE) of 0.63 °C for the training period and 1.19 °C for the validation period.  At Cat 

Bk, the coefficient of determination (R2) was 0.986 (training) and 0.948 (validation).  The 

bias was 0.00 °C for the training period and -0.28 °C for the validation period.  For the 

LSWM, the ANN model performed comparably well, especially during training (RMSE = 

0.69 °C and R2 = 0.989).  However, during the validation period, the RMSE was higher, at 

1.62 °C, with a correspondingly lower R2 at 0.930.  The bias for LSWM was 0.00 °C 

(training) and 0.05 °C (validation).  Overall (all years), the ANN model performed well 

for both watercourses, with a RMSE of 0.94 °C (Cat Bk) and 1.23 °C (LSWM) and a R2 

values of 0.967 (Cat Bk) and 0.962 (LSWM).  Water temperatures were slightly 

underestimated at Cat Bk, with a bias of –0.13 °C.  The overall bias for LSWM was very 

low, at 0.02 °C. 

A comparison by year showed consistent results during the training period, with the 

RMSE being less than 0.91 °C and R2 being over 0.980 (Table 4.8).  The bias was 

consistent over the years and was generally low (less than ± 0.06 °C).  The validation 

RMSE’s were 2 to 3 times higher than for those of the training years.  Cat Bk showed 
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RMSE’s between 1.02 °C and 1.40 °C.  LSWM showed RMSE’s between 1.33 °C and 

1.91 °C during the validation period.  Coefficients of determination (R2) were similar 

throughout the validation years at Cat Bk (0.948 to 0.959) but were variable at LSWM 

(between 0.868 and 0.971).  The bias was highest at Cat Bk in 2005 (-0.66 °C) and 2006 

(-0.69 °C) with correspondingly lower values for the LSWM (±0.40 °C). 

Table 4.8 also shows the performance of the model on a seasonal basis.  Spring was 

between April 15 and June 21 (days 105-171), summer between June 22 and September 

20 (days 172-263) and autumn between September 22 and October 31 (days 264-305).  

For the training period, autumn showed the best performance with a RMSE of 0.47 °C 

(Cat Bk) and 0.52 °C (LSWM).  Spring (training period) showed a poorer performance 

with RMSE values of 0.70 °C (Cat Bk) and 0.85 °C (LSWM).  RMSE’s during the 

summer were similar at Cat Bk and LSWM, with values of 0.64 °C and 0.67 °C, 

respectively.  Coefficients of determination (R2) were similar in autumn and spring with 

values over 0.979; however, lower values were observed in the summer (0.942-0.961).  

The biases were generally small for both watercourses for the training period, with 

seasonal values less than ±0.02 °C. 
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Table 4.8  Results of artificial neural network (ANN) models for the prediction of hourly 
water temperatures at Catamaran Brook and Little Southwest Miramichi. 

 

 

 Catamaran Brook  Little Southwest Miramichi 

Period  RMSE R2 Bias  RMSE R2 Bias 

         
Training (1998-2002)  0.63 0.986 0.00  0.69 0.989 0.00 
         
1998  0.53 0.984 0.06  0.55 0.990 0.01 
1999  0.71 0.984 0.00  0.63 0.992 0.01 
2000  0.63 0.984 -0.05  0.63 0.989 0.00 
2001  0.63 0.987 0.03  0.91 0.980 -0.01 
2002  0.63 0.988 -0.04  0.70 0.991 -0.01 
         
Validation (2003-2007)  1.19 0.948 -0.28  1.62 0.930 0.05 
         
2003  1.22 0.953 0.21  1.50 0.971 0.34 
2004  1.02 0.959 -0.15  1.71 0.898 0.22 
2005  1.40 0.948 -0.66  1.91 0.920 0.10 
2006  1.17 0.948 -0.69  1.33 0.953 -0.03 
2007  1.13 0.950 -0.25  1.58 0.868 -0.40 
         
All years (1998-2007)  0.94 0.967 -0.13  1.23 0.962 0.02 

  Seasonal Analysis 

Training (1998-2002)   
Spring  0.70 0.979 0.01  0.85 0.979 0.02 

Summer  0.64 0.942 0.00  0.67 0.961 -0.02 
Autumn  0.47 0.979 0.00  0.52 0.985 0.02 

         
Validation (2003-2007)         

Spring  1.38 0.920 -0.02  1.76 0.922 0.78 

Summer  1.02 0.865 -0.32  1.61 0.776 -0.20 
Autumn  1.25 0.856 -0.53  1.39 0.890 -0.47 

         
All years (1998-2007)         

Spring 1.06 0.951 -0.01  1.38 0.947 0.39 
Summer 0.85 0.901 -0.16  1.23 0.868 -0.11 
Autumn  0.94 0.915 -0.27  1.00 0.943 -0.19 
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Seasonal results were similar during the validation period, although RMSE’s and biases 

were generally higher, with lower R2.  Highest RMSE’s were observed during the spring 

(1.38 °C Cat Bk and 1.76 °C LSWM) and best performances were in summer in Cat Bk 

(1.02 °C) and autumn in LSWM (1.39 °C).  Summer had the lowest R2 (0.776), whereas 

spring had the highest R2 (0.922).  Spring showed a general overestimation of predicted 

water temperature in LSWM, with a bias of 0.78 °C.  In general (all years), the ANN 

model showed similar seasonal performances in Cat Bk and a better performance in 

summer and autumn for LSWM. 

 

Figure 4.14 shows observed water temperatures (Tw(O)) and predicted water temperatures 

(Tw(P)) at Cat Bk.  The training period (Figures 4.14a-e) showed good agreement 

between observed (Tw(O)) and predicted water temperatures (Tw(P)).  However, the 

validation period (Figures 4.14f-j) showed more discrepancies between observed and 

predicted water temperatures, mainly in early spring (days 105-120) and late autumn 

(days 290-305).  Figures 4.15a-e show substantial agreement between predicted water 

temperatures (Tw(P)) via the ANN model, compared to observed water temperatures 

(Tw(O)) for LSWM.  As with Cat Bk, the validation years at LSWM (Figures 4.15f-j) 

show more differences between observed (Tw(O)) and predicted water temperatures 

(Tw(P)) in early spring and late autumn.   

 

Four different time periods of 7 days were selected over the entire study period (1998-

2007) to compare the observed (Tw(O)) and predicted (Tw(P)) water temperatures as a 

function of air temperature (Ta) (Figure 4.16).  They were selected to examine, in more 

detail, the performance of the ANN model under different meteorological and 
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hydrological conditions.  These periods were the same as those used for the equilibrium 

temperature model.  The selection was made to include two training periods and two 

validation periods over the three seasons: spring, summer and autumn (Table 4.7).  The 

two training periods comprised of i) days in summer of 1998 (days 221-227) where a 

significant change in temperature was observed and ii) spring of 1999 (days 132-138) 

where water temperatures increased rapidly.  The two validation periods included a 

period of autumn 2006 (days 292-298) to reflect the autumn conditions, and part of the 

summer of 2007, to look at the warmest conditions (days 203-209).   

 

Figure 4.16a and 4.16b shows days 221 to 227 of summer 1998 (August 9 to August 15).  

This period showed a sudden decrease in air temperature (Ta) and observed water 

temperature (Tw(O)) at both Cat Bk and LSWM, caused by rain and heavy fog on day 

223.  The predicted water temperature (Tw(P)) was slightly overestimated during the first 

two days, where air temperature was higher.  There was also a slight overestimation 

during the decrease of air temperature (Ta), where water levels increased from 0.088 m to 

0.313 m at Cat Bk and from 0.374 m to 0.970 m at LSWM.  The following days, the 

predicted water temperature (Tw(P)) closely followed the observed water temperature 

(Tw(O)).  
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Figure 4.14.  Observed water temperatures (Tw(O)) and predicted  water temperatures 
(Tw(P)) obtained from the ANN model at Catamaran Brook. 
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Figure 4.14.  Observed water temperatures (Tw(O)) and predicted  water temperatures 
(Tw(P)) obtained from the ANN model at Catamaran Brook. 
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Figure 4.15. Observed water temperatures (Tw(O)) and predicted water temperatures 
(Tw(P)) obtained from the ANN model at Little Southwest Miramichi. 
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Figure 4.15. Observed water temperatures (Tw(O)) and predicted  water temperatures 
(Tw(P)) obtained from the ANN model at Little Southwest Miramichi. 
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 The second period included days 132-138 (May 12 to May 18) in the spring of 1999 

(Figure 4.16c and 4.16d).  The first days, 132-133 experienced a few showers, followed 

by days of mainly clear sky.  Water levels decreased throughout the period at both Cat Bk 

and LSWM.  At Cat Bk (Figure 4.16c), the ANN model showed some difficulty in 

estimating water temperatures, as compared to LSWM (Figure 4.16d).  Water 

temperatures at night were generally underestimated, whereas day time temperatures were 

generally overestimated.  At LSWM, predicted water temperatures closely followed 

observed water temperature throughout the period.  

 

In 2006, during the validation period, days 292 to 298 (October 19 to October 25) were 

analyzed (Figure 4.16e and 4.16f).  This period reflected autumn conditions, with low air 

temperature and an increase in water level due to precipitation on day 294.  Predicted 

water temperatures were clearly underestimated compared to observed water 

temperatures at both watercourses.  The differences between the observed and predicted 

water temperatures was up to 2.8 °C at Cat Bk and up to 3.4 °C at LSWM. 

 

Figure 4.16g and 4.16h included a period of warm air temperatures (Ta) and water 

temperatures (Tw(O)) during the summer of 2007 from July 22 to July 29 (days 203 to 

209).  Predicted water temperatures (Tw(P)) closely followed the observed water 

temperatures (Tw(O)) during a gradual increase in air temperatures (Ta) at both Cat Bk and 

LSWM.  During most of the days, water temperatures were slightly underestimated and 

delayed, except at LSWM wherein a slight overestimation occurred at night. 
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Validation - Autumn 2006
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Validation - Summer 2007
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Training - spring 1999
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Validation - autumn 2006
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Validation - summer 2007
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Figure 4.16.  Observed water temperatures (Tw(O)), predicted  water temperatures (Tw(P)) 
from the ANN model and air temperatures (Ta) for the four detailed time periods at 
Catamaran Brook and Little Southwest Miramichi. 
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CHAPTER 5: DISCUSSION AND ANALYSIS OF RESULTS 

 

5.1 DETERMINISTIC MODEL 

The present study implemented a deterministic water temperature model using near 

stream microclimate data to better reflect heat exchanges occurring at the river level.  

This study also considered streambed heat fluxes in the modeling.  The application of 

deterministic models permits a comparison of different fluxes and their relative 

contributions (Raphael 1962; Morin and Couillard, 1990; Morin et al., 1994).  Results of 

this study are reflective of summer and autumn conditions from July 4 to October 2, and 

therefore different results would be expected during other times of year, such as in winter. 

 

Results of the present study showed a clear difference between meteorological conditions 

at the remote site (MetSta) and those collected within the river environment as those near 

stream conditions/microclimate sites as shown in Table 4.2.  Differences between remote 

vs. microclimate stations were especially significant for solar radiation and wind speed 

whereas other parameters, such as air temperature and relative humidity, showed similar 

values.  The LSWM site experienced higher solar radiation and wind speed than Cat Bk.  

Conversely, the relative humidity was 3% to 16% higher at Cat Bk which was the more 

sheltered site, than at LSWM and the MetSta.  Wind speed at Cat Bk was approximately 

4%-7% of the values at the MetSta, whereas LSWM showed values of 23%-38%.  Since 

wind speed plays such an important role in the evaporative and convective heat fluxes, 

only wind speed at the microclimate level will truly capture these fluxes.  Similar 

observations can be made for solar radiation.  At Cat Bk, incoming solar radiation was 
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27%-44% of the values observed at the MetSta and LSWM.  The incoming solar radiation 

between the MetSta and LSWM was less than 4%.  Benyahya et al. (2010) predicted 

daily stream temperatures using microclimate and regional meteorological data coming 

from three sites located within the Miramichi River system.  As in this study, the two 

parameters showing the most variability between microclimate sites and the regional 

meteorological station were solar radiation and wind speed.  With such differences 

between remote and microclimate sites, microclimate data are therefore important to 

capture near stream heat fluxes, especially in smaller watercourses (Brown, 1969; 

Johnson, 2003; Johnson, 2004; Benyahya et al., 2010). 

 

The analysis of different periods revealed varied heat flux conditions for both Cat Bk and 

LSWM (Figures 4.2 to 4.7).  For example, results showed significant agreement between 

predicted and observed total flux (Ht) during most periods with the exception of Period 1 

(Figure 4.2).  It is expected that the precipitation event in which 40 mm of rain fell in over 

10 hours played a role in Period 1.    During this important rainfall event, the calculated 

precipitation fluxes (Equation (3.13)) experienced both a gain (2.9 W m-2) and a loss       

(-0.17 W m-2) which could not explain the observed difference of almost -150 W m-2 to    

-200 W m-2 between observed and predicted total heat flux.   Therefore, a significant heat 

loss was missing from this event which can only be explained by other processes.  Heat 

fluxes may not have been added by direct precipitation falling into the river, but rather by 

advected heat flux inputs, coming from surface and near-subsurface hillslope pathways 

and groundwater (Brown and Hannah, 2007).  It was also found in other studies that the 

amount of heat added by a rainfall is highly dependent on atmospheric conditions such as 

dew point, air temperature, and solar radiation, before and after a storm event as well as 
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the intensity and duration of the rainfall event (Herb et al., 2008).  Due to this large 

difference in fluxes, Period 1 were excluded from the calculations when comparing mean 

fluxes of different periods and between surface and streambed contributions. 

 

When comparing flux contributions as in Table 4.3, it was observed that the surface heat 

flux contributed 83% of the total energy gain and 77% of the energy loss at Cat Bk, 

excluding Period 1.  The streambed flux at Cat Bk contributed 17% of the total energy 

gains and 23% of the losses.  The surface heat flux was more important at LSWM (93% 

of the total energy gain and 88% of the total energy loss).  The streambed flux at LSWM 

was lower, with gains of only 7% and losses of 12%.  These results are consistent with 

those of Evans et al. (1998) who found that over 82% of the total heat exchange occurred 

at the air/water surface.  Our study permits a comparison of different size rivers in a 

similar climatic region.  A higher streambed contribution would also be expected for 

smaller streams than Cat Bk which would experience corresponding lower wind speed 

and solar radiation as well as higher groundwater contributions. 

 

Solar radiation accounted for most of the daytime energy gain, as reported in previous 

studies (Webb and Zhang, 1997; Webb and Zhang, 1999; Younus et al., 2000; Webb and 

Crisp, 2006; Cozzetto et al., 2006; Caissie et al., 2007).  In fact, solar radiation 

contributed, on average, 63% of the total heat gain at Cat Bk and 89% at LSWM.  Solar 

radiation is very much a function of site conditions and predominately related to the 

degree of shading (Johnson, 2004).  For instance, solar radiation was much lower at Cat 

Bk (up to 254 W m-2) than at LSWM (up to 674 W m-2).    In most heat budget models, 

solar radiation was either estimated with equations or measured on a meteorological 
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station near the stream.  A shading factor was needed to be included to account for the 

shading of each specific river depending on forest cover and topography (Younus, 2000; 

Caissie et al., 2007).  In this study, measurements were made directly on the stream, 

better representing the contribution of solar radiation. 

 

Both evaporative fluxes and longwave radiation were the predominant heat loss 

components.  Evaporative flux losses were similar between Cat Bk (31%) and LSWM 

(25%) whereas the longwave radiation flux losses were higher in LSWM (56%) than in 

Cat Bk (40%).  The convective heat flux played a smaller role, generally less than 10% 

for both gains and losses, within the heat budget for both watercourses. 

 

Only a few studies were found within the literature to have taken into account the 

longwave radiation emitted from the forest canopy within the modeling study (Rutherford 

et al., 1997; Benyahya et al., 2010).  As the forest cover becomes important, the incoming 

atmospheric longwave radiation is replaced by the forest cover longwave radiation.  The 

longwave radiation was usually found to be the main component of energy loss in most 

stream water temperature heat budgets along with evaporative fluxes.  In our study, losses 

were more important at LSWM (52% to 63% of the total energy) than at Cat Bk (35% to 

48%).  Others studies (Evans et al., 1998; Webb and Zhang, 1997) showed longwave 

radiation losses of 54% and 49% of the total energy which were closer to values for 

LSWM. 

 

The evaporative heat flux was also a major source of energy loss (Table 4.3).  At Cat Bk, 

this heat loss accounted for 31% compared to 56% for LSWM.  Notably, the major source 
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of heat loss in Cat Bk was the longwave radiation whereas in LSWM the major source of 

heat loss was the evaporative flux.  Webb and Zhang (1997) showed that the evaporative 

heat flux can be an important source of energy loss with contributions reaching 30% of 

the total heat flux, values close to those observed in Cat Bk.  Cozzetto et al. (2006) 

observed that the evaporation tended to increase not only with wind speed but with stream 

temperatures as well. 

 

The convective heat flux was relatively small with gain and loss values less than 3.0      

W m-2 at Cat Bk and less than 6.3 W m-2 at LSWM (Table 4.3).  The convective heat flux 

at Cat Bk contributed similarly to the total heat flux gain (6%) and loss (7%), somewhat 

neutral overall.  For LSWM, convective heat gains were relatively small (1%) compared 

to losses (7%).  The convective heat fluxes were, in general, small compared to other heat 

fluxes (Caissie et al., 2007). 

 

Most studies have neglected the precipitation heat flux within the modeling (Evans et al., 

1998; Hannah et al., 2008) mainly because it contributed to less than 1% of the daily heat 

budget (Webb and Zhang, 1997).  In this study, precipitation heat fluxes were included; 

however, it contributed less than 1.2 % to the total heat flux for both watercourses during 

Periods 1, 4, and 6, which included rainfall events.  Precipitation heat fluxes were less 

than 0.2 W m-2 at Cat Bk and less than 0.7 W m-2 at LSWM (Table 4.3).  Although the 

precipitation fluxes were relatively low compared to other fluxes, it was clear that the 

rainfall event during Period 1 had a significant cooling effect on water temperatures at 

both Cat Bk and LSWM (Figures 4.2a and 4.2e).    Results suggest that the precipitation 

and corresponding flow generation processes most likely played an important role on 
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water temperature dynamics that was not captured by the precipitation heat flux 

equations.  For instance, concepts of streamflow generation, such as the variable area 

contribution (Freeze, 1974), most likely provided other sources of cold water to these 

watercourses than just direct channel precipitation during rainfall events.  More research 

is needed to better understand water temperature dynamics in response to rainfall events. 

 

Studies have shown the importance of streambed fluxes in water temperature dynamics 

(Jobson, 1977; Jobson and Keefer, 1979; Sinokrot and Stefan, 1993; Moore et al., 2005a).  

The streambed acted as an energy sink during the middle of the day and as an energy 

source later in the day and at night (Figure 4.2 to 4.7).  For Cat Bk and LSWM, the most 

important streambed flux contribution occurred in late afternoon (e.g., 1500-1700h) with 

losses reaching -50 W m-2.  The net streambed heat flux was predominantly an energy 

loss over the entire period at both Cat Bk (23%) and LSWM (12%), excluding Period 1 

(Table 4.3) and may be attributed mainly to heat losses from the advective fluxes (Hg).  In 

addition, the streambed contribution relative to the overall heat budget tended to be more 

important for smaller streams (20% at Cat Bk vs. 10% for LSWM).  Among the 

streambed fluxes, the heat flux by conduction was more important than the heat flux by 

advection on a diel basis.  The streambed advective heat flux was much smaller than the 

flux by conduction during summer conditions.  In autumn, Period 6, for example, and 

during winter, conditions were reversed where the heat flux by advection was more 

important.  Diel water temperature variability was significantly reduced and therefore the 

flux by conduction was correspondingly lower.   
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Predicted (Ht(P)) vs. observed total heat flux (Ht(O)) showed slightly better results at 

LSWM than at Cat Bk (Figure 4.2 to 4.7) and correspondingly higher R2 at LSWM.  This 

was most likely related to the dominant surface heat fluxes at LSWM.  It is expected that 

the estimation of surface heat fluxes have less uncertainties than corresponding streambed 

fluxes.  Such results can be observed from Figure 4.8 where the LSWM, a surface flux 

dominated river, shows a better agreement between predicted and observed heat gains 

than Cat Bk, again, excluding Period 1.  Heat gains in Cat Bk were slightly 

underestimated, presumably due to a lower solar radiation contribution.  In fact, the main 

component of the heat gain for both sites was solar radiation, which was obtained by 

direct measurements using a pyranometer.  Figure 4.8 also suggests a better estimation of 

heat gains than losses (losses showed more variability).  Important components of heat 

losses, such as the evaporation rates, which are difficult to estimate, may have played an 

important role in higher uncertainties in the estimation of losses.   

 

Predicted water temperatures (Tw(P)) were calculated from Equation (3.2b), using the 

predicted total heat flux (Ht(P)).  Predicted water temperatures were very well estimated 

at both study streams with RMSEs less than 0.33 °C, R2 higher than 0.969 and bias less 

than 0.20 °C for all six periods (Table 4.5).  As with the total heat fluxes, predicted water 

temperatures for both study watercourses were better estimated in Period 6, and had a 

poorer, but still a good performance, in Period 1.  In Period 1, the total heat flux was 

underestimated during the important rainfall event.  Even if the prediction of total heat 

flux was poor in Period 1, the estimation of water temperatures was very effective with 

very low RMSE at both study streams (Table 4.5).  LSWM had a slightly better 

performance for water temperature predictions (Figure 4.10) than Cat Bk, as in the 
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prediction of total heat flux.  At Cat Bk, as shown in Figure 4.9, many days of different 

periods showed slight overestimation of daily maximum water temperatures (˂1 °C).  

Results showed that Cat Bk was more sensitive to the estimation of total heat flux since 

water levels were generally lower than at LSWM.   The deterministic model was effective 

in the predictions of hourly water temperatures at both study streams and for all periods. 

 

5.2 EQUILIBRIUM TEMPERATURE MODEL 

Deterministic models have been shown to be effective modeling tools for predicting 

temperatures (Evans et al., 1998; Younus et al., 2000; Caissie et al., 2007; Hannah et al., 

2008), but they require a lot of input data.  A simplified model was developed, assuming 

that total heat flux was proportional to the difference between the water temperature and 

an equilibrium temperature (Edinger et al., 1968). Most equilibrium temperature models 

were developed to study the thermal regime of rivers (Novotny and Krenek, 1973; Gu, 

1998; Mohseni and Stefan, 1999), but few have used it to model long-term time series of 

water temperatures (Caissie et al., 2005; Larnier et al., 2010).  No studies could be found 

within the literature where this modeling approach was applied at hourly time scales.  

However, for a daily time scale, studies have shown (Caissie et al., 2005; Larnier et al., 

2010) that air temperature was highly related to equilibrium temperatures, permitting the 

expression of equilibrium temperature as a linear function of air temperature.  This 

resulted in good modeling performance of daily water temperatures. 

 

The coefficient of the relationship between air and equilibrium temperature was 

optimized by minimizing the minimum square of errors between observed and predicted 

water temperatures.  The coefficient α of the equilibrium temperature model only reflects 
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the total heat flux represented by the air temperature.  A coefficient α higher than 1 means 

that the bulk energy component is higher than the measures of air temperature (Caissie et 

al., 2007; Larnier et al., 2011).  The coefficient α was 0.87 at Cat Bk and 1.08 at LSWM.  

This reflects that LSWM is more exposed to meteorological factors than at Cat Bk, 

suggesting the importance of solar radiation as well as other parameters, than air 

temperature.  The values calculated within the present study for hourly temperatures were 

in the range found in many studies using the equilibrium temperature concept.  Caissie et 

al. (2005) calibrated both the same study streams with coefficient α at 0.81 at Cat Bk and 

of 1.05 at LSWM.  Marcé and Armengol (2008) found the coefficient α varying in the 

range of 0 to 2.  Larnier et al. (2010) found the coefficient α (1.12) closer to the LSWM, 

since the Garonne River was wide and unsheltered by streamside vegetation similar to 

LSWM.  The coefficient β was calibrated at 0 °C, like in Caissie et al. (2005).  However, 

other studies have shown values of β at 0.44 °C (Larnier et al., 2010) and –10 °C to 45 °C 

(Marcé and Armengol, 2008).   

 

The thermal exchange coefficients K were calculated at 2.7 W m-2 °C-1 (Cat Bk) and at 

13.1 W m-2 °C-1 (LSWM).  Caissie et al. (2005), who also studied the same two rivers 

(Cat Bk and LSWM), but at a daily time scale, calibrated the model with similar 

coefficients α and β, however, the thermal exchange coefficients K were higher (6.3       

W m-2 °C-1 (Cat Bk) and 29.1 W m-2 °C-1 (LSWM)).  Again, Larnier et al. (2010) showed 

results close to the LSWM with a thermal exchange coefficient K of 34.4 W m-2 °C-1.  

Marcé and Armengol (2008) showed thermal exchange coefficients ranging from 0 to 

23.3 W m-2 °C- 1.  Herb and Stefan (2011), who also predicted hourly water temperatures, 

calculated a thermal exchange coefficient close to those calculated in this study.  The 
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South Branch (Minnesota, USA) had a thermal exchange coefficient K of 9.0 W m-2 °C-1 

and the main stem had a coefficient K at 13.1 W m-2 °C-1.  The hourly exchange 

coefficients K found in the present study were lower than studies of daily mean water 

temperatures, showing less exchange of energy at an hourly scale. 

 

The thermal exchange coefficient K was assumed constant throughout the year in the 

equilibrium temperature model.  In order to evaluate the relationship between K and the 

time of year, the thermal exchange coefficient K was calibrated for each individual month 

at both studied streams (Table 5.1).  The months of May, September and October had a 

coefficient K closest to the coefficient K value calibrated annually (2.7 and 13.1 W m-2 

°C-1).  From June to August, values of K were higher, reflecting a better heat exchange 

during the highest air and water temperatures usually observed in summer.  The month of 

April had values significantly lower than other months at Cat Bk (0.74 W m-2 °C-1) and 

LSWM (5.2 W m-2 °C-1).  The equilibrium temperature model had the poorest 

performance in spring at both study streams.  These results showed poorer heat exchange 

(low value of K) and modeling performance this time of year, as a result of poorer 

relationship between air and water temperatures, due to snowmelt conditions leading to 

higher water levels. 

 

A regression analysis was fitted between the thermal exchange coefficient K (annual) and 

meteorological parameters: Air temperature (°C), water temperature (°C), incoming solar 

radiation (W m-2), water level (m), relative humidity (%), and wind speed (m s-1).  The 

coefficient of regression (R2) for each relation is presented in Table 5.2.  Relative 

humidity did not show any significant relationship (p ˃ 0.650) with the thermal exchange 
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Table 5.1.  The values of the thermal exchange coefficient (K) calibrated for each month 
(April to October) at both Catamaran Brook (Cat Bk) and Little Southwest Miramichi 
(LSWM). 

Month Catamaran Brook Little Southwest Miramichi 

 K (W m-2 °C-1) K (W m-2 °C-1) 

April 0.74 5.2 
May 2.84 9.0 
June 6.62 21.0 
July 5.83 31.8 

August 3.98 25.6 
September 2.81 12.2 

October 2.60 12.7 

 

coefficient K (R2 < 0.0041).  Wind speed was not significantly (p ˂ 0.022) related to the 

thermal exchange coefficient with values of R2 lower than 0.09 at both streams.    The R2 

between the incoming solar radiation and thermal exchange coefficient was not 

significant at LSWM (R2 = 0.07; p ˃ 0.051), however, was more significant at Cat Bk (R2 

= 0.15; p ˂ 0.002), since it is a small sheltered stream.  Water level had a significant 

relationship (p ˂ 0.005) to K with R2 of 0.12 and 0.19 at both Cat Bk and LSWM.  The 

thermal exchange coefficient K was significantly (p ˂ 0.001) related to two parameters: 

Air and water temperatures.  The R2 values ranged from 0.32 to 0.35 between these 

parameters.   

 

The RMSE obtained with the equilibrium temperature model were similar or slightly 

higher than those observed in other studies, with RMSE values of 1.52 °C (Cat Bk) and 

1.98 °C (LSWM).  Most equilibrium temperature models were developed to estimate 

daily temperatures. The modified equilibrium temperature model developed in Herb and 

Stefan (2011) estimated daily average stream temperatures with a RMSE of 1.2 °C for a 

small tributary and of 1.4 °C for a larger stream.   
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Table 5.2.  Coefficient of determination (R2) of the regression analysis between the 
thermal exchange coefficient (K) and selected meteorological parameters (air temperature 
(°C), water temperature (°C), incoming solar radiation (W m-2), water level (m), relative 
humidity (%), and wind speed (m s-1)) at Catamaran Brook (Cat Bk) and Little Southwest 
Miramichi (LSWM). 
 

  
Cat Bk 

R2 
LSWM 

R2 

Air temperature (°C) 0.33 0.32 
Water temperature (°C) 0.35 0.33 
Water level (m) 0.12 0.19 
Incoming solar radiation (W m-2) 0.15 0.07 
Wind speed (m s-1) 0.07 0.09 
Relative humidity (%) 0.00 0.00 

 

Marcé and Armengol (2008) found a similar RMSE for Cat Bk, around 1.40°C.  Larnier et 

al. (2010) calculated RMSEs of 1.22 °C (calibration) and 1.31 °C (validation) between 

daily observed and predicted water.  Caissie et al. (2005) applied the same equilibrium 

temperature model as in the present study on both Cat Bk and LSWM, but at the daily 

scale, and showed lower RMSEs (1.21 °C = Cat Bk; 1.52 °C = LSWM).   

 

A seasonal analysis was performed at both Cat Bk and LSWM over the entire study 

period for three seasons: Spring (April 15 to June 20), summer (June 21 to September 20) 

and autumn (September 21 to October 31). This analysis showed that the best 

performance of the equilibrium temperature model was during autumn and the poorest 

performance was in spring, results found in most temperature modeling studies  (Caissie 

et al., 1998, 2005; Chenard and Caissie, 2008).  Spring showed less efficient energy 

exchange probably caused by the snowmelt.  Other studies have shown that snowmelt in 

spring can influence the relationship between air and water temperatures (Webb and 

Nobilis 1997).  Autumn showed better predictions of water temperatures, presumably due 
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to lower water levels usually observed during that time of year and a better heat exchange 

(relation) between air and water temperatures. 

 

Predicted hourly water temperatures were used to estimate daily mean water temperatures 

(Tmean) (Table 5.3).  The performance of the daily mean water temperatures (Tmean) was 

better than the hourly water temperatures.  The RMSE for all years was 1.20 °C for Cat 

Bk and 1.54 °C for LSWM.  The coefficient of determination R2 was varied between 

0.937 and 0.949 at both study streams. The biases for daily mean temperatures were also 

lower than at an hourly scale, with values less than –0.29 °C.  These results were also 

comparable to other equilibrium temperature results estimating daily water temperatures.  

In fact, estimating daily water temperatures using predicted hourly water temperatures 

gave similar results than the model directly estimating daily water temperatures (Caissie 

et al., 2005).    

 

Daily maximum water temperatures have been shown to have an important influences on 

biological conditions (Beschta et al., 1987; Breau et al., 2007).  The predicted hourly 

water temperatures were also used to calculate the daily maximum water temperatures 

(Tmax) (Table 5.3).  The equilibrium temperature model gave a RMSE (all years) of 1.98 

°C for Cat Bk and 2.26 °C for LSWM.  The coefficient of determination was between 

0.909 and 0.935 and biases were between –1.16 °C and –1.34 °C at both Cat Bk and 

LSWM.  The equilibrium temperature model did not effectively estimate the daily 

maximum water temperatures.  Evaporative cooling has been shown to affect the 

relationship between air and stream temperatures at high temperatures.  For example, 

Erickson and Stefan (2000) stated that the relationship between air and stream 
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temperature differed from linearity at air temperatures over 25 °C, where water 

temperature does not increase at the same rate as air temperature.  Mohseni and Stefan 

(1999) set that limit at 20 °C.   

 

Table 5.3.  Results of the estimation of the daily mean (Tmean) and the daily maximum 
stream temperature (Tmax) calculated from the predicted hourly water temperatures 
(equilibrium temperature model) at Catamaran Brook and Little Southwest Miramichi. 
 

  Catamaran Brook  Little Southwest Miramichi

Tw Period RMSE R2 Bias  RMSE R2 Bias 

         
Daily mean 
 Tmean (°C) 

Calibration 
(1998-2002) 1.16 0.949 -0.01  1.44 0.949 -0.03 

 
Validation 

(2003-2007) 1.25 0.940 -0.29  1.64 0.924 -0.15 

 
All years 

(1998-2007) 1.20 0.943 -0.15  1.54 0.937 -0.09 
         
Daily maximum  
Tmax (°C) 

Calibration 
(1998-2002) 1.91 0.926 -1.16  2.17 0.935 -1.21 

 
Validation 

(2003-2007) 2.05 0.920 -1.34  2.35 0.909 -1.17 

  
All years 

(1998-2007) 1.98 0.921 -1.25  2.26 0.923 -1.19 

 

 

A comparison of observed versus predicted daily mean (Tmean) and maximum (Tmax) water 

temperatures was carried out for both Cat Bk and LSWM (Figure 5.1).  Significant 

agreement was observed between predicted and observed daily maximums with R2 of 

0.921 (Cat Bk) and 0.923 (LSWM).  Higher agreement between predicted and observed 

daily mean water temperatures with R2 of 0.943 (Cat Bk) and 0.937 (LSWM) was 

observed.  

The equilibrium temperature models have shown poorer performance at an hourly time 

scale compared to studies of daily mean stream temperatures.  The relationship between 
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air and stream temperature can be affected by many factors, such as wind sheltering, 

stream shading, ground-water inputs or artificial heat inputs (Erickson and Stefan, 2000).  

Significant deviation of the relationship between air and water temperatures is evident for 

hourly temperatures; however, other studies have shown that as the time scale increases 

(e.g., daily, weekly) the relationship is better (Webb et al., 2003).  Time lag is also known 

to affect the air/stream relationship, especially at an hourly scale, and for shallow streams 

(Erickson and Stefan, 2000).  Time lag is the time delay of the impact of air temperature 

on stream temperatures and can be from a few hours to a few days, and is reported to be 

directly proportional to the average stream depth (Stefan and Preud’homme, 1993).   

 

5.3 ARTIFICIAL NEURAL NETWORK MODEL 

The present study developed an artificial neural network (ANN) model to estimate hourly 

river water temperatures from the available hydrological and meteorological data.  Hourly 

water temperature models are not as common as mean daily temperature models, but they 

have the advantage of predicting the diel variability in water temperature.  This variability 

can, in many cases, be more important for aquatic resources than average temperature.  

For instance, during periods of high water temperatures, it is important to predict both 

maximum and minimum temperatures in order to assess the stress and subsequent 

recovery periods of aquatic resources, such as salmonids (Breau et al., 2007).  The ANN 

model was applied to two thermally different streams: Catamaran Brook (Cat Bk) and 

Little Southwest Miramichi (LSWM).  Previous studies have shown that ANN models 

were good models for the prediction of mean daily river water temperatures (Bélanger    

et al., 2005; Karaçor et al., 2007; Chenard and Caissie, 2008).  However, few studies have 
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used ANN models for predicting hourly river water temperatures, one being Risley et al. 

(2003).   

 

The developed ANN model used the hourly air temperature of the present (°C) and 

previous days (°C), daily water level (m), mean daily water temperature (°C) (predicted 

from a previous ANN model), time of year (day) and time of day (hour).  This study 

showed that ANN models were good for the prediction of hourly river water 

temperatures, with overall RMSE of 0.94 °C (Cat Bk) and 1.23 °C (LSWM) and R2 of 

0.967 (Cat Bk) and 0.962 (LSWM), as referred to in Table 4.8.  The ANN model 

generally underestimated the water temperatures at Cat Bk with a bias of –0.13 °C and a 

very small bias at LSWM (0.02 °C).  No data are available from the literature to compare 

ANN models to stochastic models.  However, these models may be expected to show 

similar results (performances). 

 

The ANN modeling results were compared with those of previous studies that predicted 

daily mean water temperatures.  The modeling of hourly stream water temperatures was 

found to be as good as the modeling of daily mean stream water temperatures.  For 

example, Chenard and Caissie (2008) modeled daily mean stream temperatures in 

Catamaran Brook using an ANN and they achieved similar results with overall RMSE of 

0.96 °C and R2 of 0.971.  Bélanger et al. (2005) calculated an overall RMSE of 1.06 °C 

when applying an ANN model at Catamaran Brook for daily mean temperatures.  The 

study by Bélanger et al. (2005) used only air temperatures and water levels as input 

parameters.  Karacol et al. (2007) used only past stream temperature data to predict 

maximum stream temperatures of the five days ahead.  They achieved results with 
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average prediction error of less than 1 °C.  Risley et al. (2003) developed an ANN model 

for 148 sites in western Oregon to predict hourly water temperatures from June 21 to 

September 20, 1999.  Three different ANN models were developed to estimate hourly 

water temperatures along 1st, 2nd, and 3rd order streams using meteorological data, 

including air temperature, dew-point temperature, short-wave solar radiation, air pressure, 

and precipitation,  as well as riparian habitat characteristics which included stream 

bearing, gradients, depth, substrate, wetted widths, and canopy cover, and basin 

topographical and vegetative  landscape characteristics, acquired from a geographic 

information system (GIS). Their results showed RMSE ranging between 0.05 °C and 0.59 

°C and with R2 ranging from 0.88 to 0.99. 

 

The results of the present ANN model were comparable to and/or better than those of 

deterministic and stochastic models.  Marceau et al. (1986) developed both deterministic 

and stochastic models of daily water temperature with higher RMSEs.  For instance, their 

models showed an overall RMSE of 1.86 °C for the stochastic model and an overall 

RMSE of 2.30 °C for the deterministic model.  The present study results compared well 

with studies applied at both Cat Bk and LSWM, using stochastic and temperature 

equilibrium models.  At Cat Bk, a stochastic model estimating daily mean stream 

temperatures (Caissie et al., 1998) showed a higher RMSE of 1.26 °C.  The equilibrium 

temperature model (Caissie et al,. 2005) developed for both Cat Bk and LSWM also 

showed slightly poorer performance than the ANN model developed in this study.  They 

showed RMSEs of 1.21 °C and 1.52 °C for Cat Bk and LSWM, respectively.
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Figure 5.1.  Predicted (Tmean(P)) versus observed daily mean water temperatures 
(Tmean(O)) and predicted (Tmax(P)) versus observed daily maximum water temperatures 
(Tmax(O)) at Catamaran Brook and Little Southwest Miramichi, using the equilibrium 
temperature model.   
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The predicted hourly water temperatures from the ANN model were used to estimate the 

daily mean and maximum water temperatures and are shown in Table 5.4.  The daily 

mean water temperatures estimated from the training period showed very low RMSE for 

both Cat Bk (0.24 °C) and LSWM (0.39 °C).  The RMSEs for the daily mean water 

temperatures were slightly better than the ones calculated with hourly water temperatures 

using ANN model for the validation period.  The RMSEs were of 1.04 °C at Cat Bk and 

1.10 °C at LSWM.  The RMSEs estimated for daily mean water temperatures over all 

years were lower than those of similar studies discussed previously (Bélanger et al., 2005; 

Chenard et al., 2008) with values of 0.74 °C at Cat Bk and 0.82 °C at LSWM.  The 

predicted hourly water temperatures from the ANN model were also used to estimate the 

daily maximum water temperatures in Table 5.4, as maximum water temperatures have 

been shown by Lund et al. (2002) to be important for aquatic resources.  The RMSEs 

were of 1.04 °C and 1.09 °C for the predicted daily maximum water temperatures, at Cat 

Bk and LSWM, respectively.  A comparison of observed versus predicted daily mean 

(Tmean) and maximum (Tmax) water temperatures was carried out for both Cat Bk and 

LSWM and is shown in Figure 5.2.  Results showed notable agreement for the daily 

maximum with R2 of 0.979 (Cat Bk) and 0.982 (LSWM) and a slightly better agreement 

for the daily mean water temperatures with R2 of 0.964 (Cat Bk) and 0.975 (LSWM). 

These results showed that hourly water temperatures developed with the ANN model 

could be used to improve the prediction of daily mean and maximum water temperatures. 

 

A comparison of seasonal performance showed that the ANN model performed best in 

summer and autumn, which is consistent with other temperature models (Caissie et al., 

1998, 2005; Chenard and Caissie, 2008). High water levels seemed to have had an 
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important influence on the modeling of water temperatures using the ANN model, mostly 

when water levels experienced important increase following storm events or during the 

spring high flows.  The poorer performance in spring could be explained by the higher 

discharge from snowmelt, resulting in a poorer air to water temperature relationship 

(Caissie et al., 1998).  As high water levels seemed to have resulted in a poorer 

performance, low water levels (usually observed in autumn and mid-summer) have 

resulted in more effective thermal exchange and therefore better performances. 

 

Table 5.4.  Results of the estimation of the daily mean (Tmean) and the daily maximum 
stream temperature (Tmax) calculated from the predicted hourly water temperatures 
(artificial neural network model) at Catamaran Brook and Little Southwest Miramichi. 
 

  Catamaran Brook  Little Southwest Miramichi

 Period RMSE R2 Bias  RMSE R2 Bias 

         
Daily mean 
 Tmean (°C) 

Calibration 
(1998-2002)

0.24 0.998 0.00 
 

0.39 0.998 0.00 

 
Validation 

(2003-2007)
1.04 0.959 -0.28

 
1.10 0.983 0.05 

 
All years 

(1998-2007)
0.74 0.979 -0.13

 
0.82 0.991 0.03 

         
Daily maximum  
Tmax (°C) 

Calibration 
(1998-2002)

0.69 0.985 -0.16
 

0.75 0.995 -0.24 

 
Validation 

(2003-2007)
1.31 0.943 -0.37

 
1.36 0.979 0.02 

  
All years 

(1998-2007)
1.04 0.966 -0.26

 
1.09 0.979 -0.12 

 

 

 

 

 

 



154 
 

Catamaran Brook

R2 = 0.979

0

5

10

15

20

25

0 5 10 15 20 25

Observed daily mean Tw (O), °C

P
re

d
ic

te
d

 d
ai

ly
 m

ea
n

 T
w
(P

),
 °

C

Little Southwest Miramichi

R2 = 0.9824

0

5

10

15

20

25

30

0 10 20 30

Observed daily mean Tw (O), °C

P
re

d
ic

te
d

 d
ai

ly
 m

ea
n

 T
w
(P

),
 °

C

Catamaran Brook

R2 = 0.9659

0

5

10

15

20

25

0 10 20 30

Observed daily maximum Tw (O)max, °C

P
re

d
ic

te
d

 d
ai

ly
 m

ea
n

 T
w

(P
),

°C
Little Southwest Miramichi

R2 = 0.975
0

5

10

15

20

25

30

35

0 10 20 30

Observed maximum Tw (O), °C

P
re

d
ic

te
d

 m
ax

im
u

m
 T

w
(P

),
 °

C

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2.  Predicted (Tmean(P)) versus observed daily mean water temperatures 
(Tmean(O)) and predicted (Tmax(P)) versus observed daily maximum water temperatures 
(Tmax(O)) at Catamaran Brook and Little Southwest Miramichi, using the artificial neural 
network model. 
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At LSWM, the ANN model performed best in autumn for all years, whereas at Cat Bk, 

some years had their best performance during summer.  These results suggest that the 

thermal exchange is more efficient for less sheltered rivers under low flows as in autumn 

at LSWM.  Cat Bk is more sheltered and could potentially be influenced by other factors, 

such as groundwater, reducing the efficiency of the thermal exchange.  For example, 

results of the deterministic model in Section 4.1, showed that the impact of groundwater 

on hourly water temperatures was more significant on smaller streams, such as Cat Bk. 

  

The training period showed better results than the validation period, which is consistent in 

modeling.  Daily water levels were used in the modeling rather than hourly temperatures 

and were estimated using power functions (Caissie, 2004).  Using hourly water levels 

instead of daily water levels could have potentially improved the modeling, especially 

during days that discharge varied significantly.  However, hourly water levels were not 

available for the present study. 

 

Good modeling results were obtained using ANN models with few input parameters.  As 

such, the advantage of ANNs lies in their capability as a universal approximation tool, as 

well as in their simplicity in model development and model update capability.  ANN 

models have an advantage over more commonly used water temperature models, as they 

do not need a lot of input data.  In the present study, only air temperature and water level 

were used to achieve accurate predictions.  For instance, deterministic models need many 

hydrological and meteorological parameters that are not always readily available, such as 

solar radiation.  Another major advantage of ANNs is that they are easy to use and very 

simple in their application.  However, ANN models cannot give a physical explanation of 
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the relationship between the input and output data.  These models should be used with 

caution, especially when using input data that are outside the range of the calibration 

period, because the model may not be trained for such conditions (Risley et al., 2003). 

 

5.4 COMPARISON OF WATER TEMPERATURE MODELS 

Three water temperature models were developed and applied on two thermally different 

watercourses (Cat Bk and LSWM) to estimate hourly water temperatures: A deterministic 

model, an equilibrium temperature model, and an artificial neural network model.  The 

results showed that all models were effective in predicting hourly water temperatures at 

both Cat Bk and LSWM.  In the present study, the deterministic models outperformed the 

other two models; however, it was only developed for the year 2007, due to the 

availability of microclimate and streambed temperature data.  The RMSEs for the 6 study 

periods (year 2007) was between 0.18 °C and 0.33 °C at Cat Bk and between 0.14 °C and 

0.23 °C at LSWM.  The two other models, equilibrium temperature and ANN, were 

developed for the years 1998-2007.   The RMSEs for the ANN model were also low with 

values between 0.53 °C and 1.40 °C at Cat Bk and between 0.55 °C and 1.91 °C at 

LSWM, when comparing among years (1998-2007).  The equilibrium temperature model 

had the poorest performance of all 3 models with RMSEs values of between 1.35 °C and 

1.63 °C at Cat Bk and between 1.60 °C and 2.28 °C at LSWM (1998-2007). 

 

The selection of a particular water temperature model by engineers and scientists will 

ultimately depend on the type of problems under investigation and most likely data 

availability.  For instance, Table 5.5 outlines major differences between models 

considered within the present study and other common models.  ANN and equilibrium 
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temperature models are generally low in data requirement while deterministic models 

require a whole suite of input parameters that may not always be readily available 

including solar radiation and streambed fluxes.  As such, ANN and equilibrium 

temperature models are better adapted for extending water temperature time series under 

natural conditions and they can be applied in areas where data are limited.  However, 

when dealing with impact studies where the energy components are important, such as the 

increase in solar radiation input due to streamside vegetation removal as in forestry 

impact studies, then deterministic models are better adapted for these analyses.  The 

equilibrium temperature model does not require a lot of input data (only air temperature 

and water level in this study) and provides an advantage over other models.  For example, 

by using only air temperatures, stochastic models are based on statistical relationships 

rather than modeling underlying physical processes..  Deterministic models performed 

best in this study, however this modeling approach requires an extensive list of inputs 

data, some not readily available, such as  solar radiation and streambed temperatures, 

resulting in a high cost in development and application.  Their main advantage is their 

possibility to extract pertinent information about the different physical processes that 

influences the thermal regime of rivers as with environmental impact studies. 
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Table 5.5. Comparison of advantages, disadvantages and data requirement of the three 
different types of water temperature models. 
 

Water temperature models  Advantages Disadvantages 
       

Deterministic model  - Adapted to impact studies - Numerous input  
parameters 

  - Quantification of energy  
Components 

- Costly in development  
and application 

  - Conceptual model - High data requirements 
    
    
Equilibrium temperature model  - Simple model - Semi-empirical 
  - Few input parameters - Not well adapted to  

impact studies 
  - Conceptual model  
  - Low data requirements  
    
Artificial neural network model  - Simple in application - No physical explanation 

of the underlying process 
  - Few input parameters  
  - No need to know the relationship 

between the  
 input and output  

- Applied with caution 
outside the calibration 
range 

  - Low data requirements  

        
Stochastic model  - Simple in application - Not well adapted to 

environmental impact 
studies 

  - Low input requirement (usually 
only air temperature) 

- Based on statistics 
relations rather than the 
physical processes 
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CHAPTER 6: CONCLUSION 

 

6.1 CONCLUSION 

Water temperature is an important component for water quality and biotic condition in 

rivers.  Among other things, water temperature controls the rate of decomposition of 

organic matter, the dissolved oxygen content, and chemical reactions in general.  The 

thermal regime of a river influences many aspects of fish habitat, life condition, and the 

distribution of aquatic species.  It is therefore important to develop adequate stream 

temperature models to effectively manage water and fisheries resources. 

 

This study dealt with the modeling of river water temperatures using a deterministic 

model, an equilibrium temperature model, and an artificial neural network model.  The 

water temperature models were applied on two watercourses of different sizes and 

thermal characteristics, but within a similar meteorological region, namely, the Little 

Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada).    

 

The deterministic model showed the importance and the role of microclimate data to 

better estimate surface heat fluxes as well as the importance of the streambed flux 

contribution in the overall heat budget model.  Results showed that for larger river 

systems surface heat fluxes are a dominant component of the heat budget with a 

correspondingly smaller contribution from the streambed.  However, as watercourses 

become smaller and as groundwater contribution becomes more significant, the 

streambed contribution becomes an important component in the overall heat budget.  
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With the exception of Period 1, predicted fluxes from the deterministic model showed 

significant agreement with observed values.  As such, deterministic models remain an 

effective tool in predicting the different heat flux components, which will ultimately 

contribute toward a better understanding of river thermal regimes. 

 

Deterministic models have been shown to be very effective in estimating stream 

temperatures, but require a lot of data that are not available in most rivers.  The 

equilibrium temperature model uses less input data, as the net surface heat flux can be 

expressed as a simpler equation. They also have an advantage over stochastic levels, since 

they use water level as an input, not relying on modelling for air temperature only.  The 

equilibrium temperature model showed good performance, although slightly higher than 

other models with RMSE of 1.52ºC and 1.98ºC for both streams.  These results suggest 

that the air and equilibrium temperature did not totally reflect the net surface heat flux at 

hourly time scales.  Another component that may not have been captured by this model is 

the streambed contribution.  Values higher than 1 for the coefficient α reflects rivers more 

exposed to other meteorological conditions, like solar radiation.  At Cat Bk the coefficient 

α was of 0.87, reflecting a more sheltered stream, whereas at LSWM the coefficient was 

of 1.08, since it is more exposed to other meteorological parameters.  The model’s best 

performance was in autumn, during low water levels which presumably permitted a more 

efficient thermal exchange.  In contrast, the spring resulted in poorer performance where 

the presence of snowmelt may have contributed to a lack of association between water 

and air temperature. 
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This study showed that an artificial neural network (ANN) could be an effective tool for 

the prediction of hourly stream temperatures.  ANN models achieved comparable or 

better performances to other water temperature models reported in the literature, with 

RMSE of 0.94 °C at Cat Bk and 1.23 °C at LSWM.  ANN models showed a good 

generalization capability by modeling well water temperature time-series.  ANN was 

effectively applied on two thermally different streams and provides similar results and 

performances.  As such, ANN models can be considered as an effective modeling tool in 

water resources and fisheries management. 

 

6.2 RECOMMENDATIONS 

In most water temperature studies, meteorological data are taken at the nearest 

meteorological station (usually the nearest airport) sometimes a few kilometres away.  

The deterministic model in this study examined different meteorological data (air 

temperature, relative humidity, wind speed, and incoming solar radiation) measured 

directly on both Cat Bk and LSWM (microclimate), as well as data coming from the 

nearest meteorological station (remote), which is usually used to describe both study sites.  

This comparison between microclimate and remote meteorological data was only 

available for the year 2007 (deterministic model), since microclimate data were not 

available for other years (1998-2007) used in the equilibrium temperature and ANN 

models.  The most significant differences between remote and microclimate data were the 

solar radiation and the wind speed, which are primarily drivers of radiation, evaporative 

and convective heat fluxes.  Using remote station data would not truly reflect the total 

heat flux at a stream, especially for smaller streams (Brown, 1969; Johnson, 2003; 

Johnson, 2004).  Microclimate data provides a better fit to predict water temperatures due 
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to a better estimation of heat fluxes and a better reflection of site conditions (Benyahya et 

al., 2010).  This spatial variability needs to be taken into account in future studies dealing 

with the modeling of water temperatures.  In order to truly estimate the energy exchange 

of streams, microclimate data should be used when available. 

 

Most studies have only considered the longwave radiation emitted by the atmosphere and 

the water (Morin and Couillard, 1990; Sinokrot and Stefan, 1993; Caissie et al., 2007).  

Few studies have considered the longwave radiation emitted by the forest canopy 

(Rutherford et al., 1997; Sing and Singh, 2001; Benyahya et al., 2010) in water 

temperature modeling.  The contribution of the forest radiation can be significant 

especially for small streams (Benyahya et al., 2010).  It also plays an important role on 

cloudless nights by increasing stream temperatures (Rutherford et al., 1997).  This study 

considered the forest radiation by using a forest cover factor and assuming forest air 

temperature as the ambient air temperature.  However, more studies should include the 

longwave radiation emitted by the forest in streams to effectively predict the heat budget, 

since the longwave radiation is a major source of energy loss in most streams.  

 

Most water temperature models have neglected the contribution of the streambed, but this 

study and others have shown it can be an important part of the heat budget, especially for 

small streams (Jobson, 1977; Jobson and Keefer, 1979; Sinokrot and Stefan, 1993; Moore 

et al., 2005).  Better prediction of the overall heat budget will improve the modeling of 

water temperatures.  The contribution of the streambed should be included in the 

estimation of energy budget, since it can contribute up to 20% of the total heat budget.  

Further work is needed to accurately quantify the impact of streambed in water 
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temperature modeling.  To address this lack of knowledge of the streambed contribution 

to stream thermal regime, good databases need to be developed on streambed and 

groundwater temperatures, since these data are often not available but are required in the 

modeling. 

 

Most water temperature studies have neglected the role of the precipitation heat flux.  The 

deterministic model included the precipitation heat flux, according to the amount of rain 

(mm) and its temperature assumed to be equal to the air temperature. The precipitation 

heat flux only represented up to 1.2 % of the overall energy budget. Clearly, it did not 

represent the cooling effect during important rainfall events.  The estimation of the 

precipitation heat fluxes should not only include precipitation directly falling on the river, 

but also include the contribution of other advective heat flux coming from surface and 

near-subsurface hillslope pathways and groundwater (Brown and Hannah, 2007).  The 

amount of heat added by precipitation is also dependent on the intensity and the duration 

of the storm event (Herb et al., 2008).  Further work is needed on the impact of 

precipitation events on the stream temperature dynamics. 

 

The water temperature models developed in this study generally experienced their poorest 

performance in spring, due to high water level caused by the snowmelt conditions.  The 

ANN model, even with good overall prediction of water temperatures, was somewhat 

sensitive to high water levels.  The equilibrium temperature model has also shown less 

effective thermal exchange during spring high water levels.  The thermal regimes of 

rivers under snowmelt conditions are poorly understood and further investigations are 

required.  Further research should address water temperatures and the thermal regime 
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during spring snowmelt conditions, to improve the modelling of stream temperatures.  

Research should address the importance of the different energy components during that 

time of year. 
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